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1 Executive Summary 

The CHE prototype is designed to estimate carbon dioxide (CO2) emissions using a modelling 
framework to link all the CO2 relevant observations with prior knowledge of the anthropogenic 
emissions and other natural fluxes that affect the observed atmospheric CO2 signal. The 
modelling aspects include atmospheric transport, atmospheric chemistry and land surface and 
ocean biogeochemical and transport processes, as well as statistical models of anthropogenic 
emissions of CO2 and co-emitted species based on human activity data. A multi-scale, multi-
species and multi-stream approach is required to target the various types of CO2 emissions 
and natural fluxes, and their wide range of scales from point sources to cities, 
regions/ecosystems and countries. Different transport schemes suited for the different 
applications from local to global scales are listed and their challenges are described. The 
various approaches to estimate biogenic fluxes and anthropogenic emissions that serve as 
prior information are reviewed with their strengths and weaknesses. A comparison of the 
different transport models and prior datasets is proposed to assess the different capabilities 
of the models and priors used to perform the CHE library of simulations. Integration of the 
various components in the framework of Earth System Modelling is ongoing, with new 
developments on tracer transport modelling, simulations of plumes from emission hotspots, 
and urban modelling, among others. The full integration of the modelling and prior components 
towards a CO2 Monitoring and Verification Support (MVS) capacity will be presented in a final 

report on the design of the CHE prototype. 

 

2 Introduction 

2.1 Background 

The CHE prototype aims at building a system to monitor the exchange of carbon dioxide (CO2) 
and potentially other important man-made greenhouse gases like methane (CH4) between the 
Earth surface and the atmosphere with the use of observations (mostly in the atmosphere), 
models and prior information, as well as their uncertainties to leverage the different sources 
of information. The system is designed to support the Paris Agreement and follows the 
directive of the European Commission CO2 Task Force (Pinty et al., 2017). The general 
strategy and rationale for the CHE prototype is provided in CHE D5.9, stemming from the 
discussions in the first WP5 workshop (Reading, 25-26 September 2019). The main 
challenges are addressed with the following recommendations: 

¶ Multi-scale approach to monitor emission from point sources (power stations or 

industrial facilities), cities and countries using different model domains from global to 

regional and to local model resolutions (e.g. from 25km to 100m). 

¶ Multi-species approach to detect and attribute the observed atmospheric signal to 

specific sources/sinks (e.g. natural and anthropogenic emissions with sectorial 

distribution). 

¶ Multi-stream approach to support different applications and users with a near-real 

time (NRT) stream focusing on shorter synoptic timescales designed to provide early 

warnings and giving feedback to data producers, and a re-analysis stream that uses 

consolidated quality-controlled data, products and models with their associated 

uncertainties to estimate trends. 

 

This report focuses on the modelling and prior components of the prototype. It complements 
the reports on Earth observations (CHE D5.2), data assimilation methodology (CHE D5.6) and 
uncertainty representation (CHE D5.8). Modelling and prior information encapsulate our 
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current knowledge and understanding of physical (e.g. atmospheric transport), biological (e.g. 
photosynthesis and ecosystem respiration) and chemical processes (affecting co-emitted 
reactive species like nitrogen oxides (NOx), carbon monoxide (CO) and methane (CH4), as 
well as human activity (e.g. fossil fuel energy production) that control the CO2 exchange 
between the earth surface and the atmosphere. This knowledge and information are crucial to 
fill the gaps in the observing system and connect observations with the CO2 emissions and 
natural fluxes that need to be monitored.  

The different model components and prior information of the emissions are shown in Figures 
1 and 2. Some model components will play a role of observation operators (linking 
observations to CO2 fluxes) and others will provide prior flux information in the data 
assimilation process described in CHE D5.6. The individual components can be either coupled 
or integrated together in the forward model configuration which propagates the information 
from the surface fluxes to the atmospheric CO2 concentrations forward in time. In an offline 
system (Figure 1), the components are connected through input/output streams. The 
components are designed to be run separately without allowing for feedbacks. In online 
models (Figure 2) the components are fully integrated, ultimately becoming an Earth System 
Model. They share the mapping and input data, ensuring consistency between components 
and they can interact with each other, allowing for the representation of complex feedbacks. 
The degree of coupling or integration can vary between different models and configurations.  
Offline models are faster and not as costly to run as ESMs. Whereas online models based on 
prognostic equations can be used to predict the atmospheric CO2 state forward in time from 
days (e.g. Agusti-Panareda et al., 2014) to decades (e.g. Friedlingstein et al., 2006). 

Section 3 provides a detailed description of the essential components in the model and prior 
information for the prototype. The strategy for their implementation in the protype is outlined 
in section 3.1. The model components are grouped into atmospheric transport which affects 
all the atmospheric tracers (section 3.2) and prior fluxes and other processes (e.g. chemistry) 
which vary depending on the species (section 3.3). Model development is essential to ensure 
a more accurate interpretation of observations and a more accurate representation of prior 
information. For example, the hourly to daily variation of the CO2 signal from biogenic fluxes 
and anthropogenic emissions is often correlated with the signal from atmospheric transport. 
These processes need to be understood and represented in the model to be able to interpret 
the high temporal and spatial variability in the observed CO2. In this report, the different 
challenges are addressed by going through the different components in the model, listing their 
options for implementation in the prototype and the approaches to evaluate their accuracy. 
Recent developments on tracer transport modelling, plume simulations from emission 
hotspots, urban modelling and biogenic fluxes from vegetation are highlighted in section 4. 
Sections 5 and 6 list the immediate requirements for the implementation of the prototype by 
2023 and the research needs for the next 5 to 10 years. A summary of the immediate priorities 
for further development in the prototype is provided in section 7. 
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Figure 1 Offline approach to modelling and prior information provision with different components 
originating from independent models or products. The arrows denote the input/output channels of the 
different components (depicted as square boxes), which result in data products (in cylindrical shapes). 

 

 

Figure 2 Online approach to modelling and prior information provision with different components 
integrated in Earth System Model. The same shapes are used as in Figure 1 to denote components 
and products. The input/output channels of the different components within the Earth System Model 
are depicted by thin arrows and the thicker arrow represents external inputs. 
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2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

In this report we will describe the strategy to represent the modelling and prior information 
aspects in the monitoring system. The different options for the modelling of transport and prior 
products for operational use and for research and development purposes are described. 
Finally, priorities for implementation by 2023 and for longer term research needs will be 
outlined, together with future plans for the final report, including the evaluation of the transport 
models and prior CO2 fluxes used in the CHE nature runs. 

2.2.2 Work performed in this deliverable 

Synthesis of modelling aspects in CHE, CAMS, VERIFY and other ESA-funded projects as 

well as literature on carbon cycle and transport models. 

2.2.3 Deviations and counter measures 

Not applicable. 

3 Modelling and prior components of the CHE prototype 

3.1 Implementation strategy 

The design of the CHE prototype requires the assessment of the different options for each 
component which depends on an implementation strategy. The implementation strategy for 

modelling and provision of prior information is based on three approaches: 

¶ HIGH RESOLUTION AND MULTI-SCALE CAPABILITY 

 

 Given the wide range of scales of CO2 signal (from point sources to hemispheric 
gradients), it is crucial to approach the problem with a high resolution and multi-scale 
monitoring capability (see D5.9). For prior anthropogenic emissions, point sources merit 
to be treated separately (e.g. power stations). Their total annual budget is usually well 
known and thus, it is distributed to the point source first, before applying a temporal scaling 
to modulate its variability on sub-annual timescales. The plumes from point sources will 
also require dedicated plume models, as global and regional models cannot resolve such 
small scales. 

EXAMPLES: From global Numerical Weather Prediction (NWP) models to plume 
dispersion models focusing on hotspots 

¶ ONLINE AND COUPLED MODELLING CAPABILITY  

The observed atmospheric signal is a result of the interaction between the signal of the 
flux and the atmospheric transport. Because both fluxes and transport have a high spatial 
and temporal variability, they often co-vary. Thus, it is crucial to represent this co-variability 
in space and time (e.g. rectifier effect). Biospheric fluxes depend on meteorological 
conditions, but also anthropogenic emissions are influenced by meteorology (e.g. heating 
demand, traffic). Thus, modelling the fluxes, meteorology and atmospheric transport online 
in a coupled mode is desirable because it allows an optimal consistency between 
components and it also has the potential to transfer information from one component to 
another (e.g. atmospheric concentration to winds).  For small-scale plumes, coupled data 
assimilation will be required to modify winds according to the observed plume. Otherwise, 
the MVS will be limited to plume imaging and mass-balance methods. 

EXAMPLES:  Coupled NWP models, Earth System Models (ESM)                                                                        
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¶ OFFLINE MODELLING CAPABILITY 

 

As the focus is on trends on decadal scales, it is crucial to be able to run long simulations. 
The interactions between the different components can also create difficulties in the 
attribution and calibration of parameters. Therefore, it is also crucial to develop an offline 
modelling capability as a research tool and to have the potential of running long re-analysis 
simulations at lower cost. Offline transport models also offer the possibility to use long DA 
windows as atmospheric CO2 and fluxes preserve the linearity assumption used in most 
DA methodologies. Offline models could also be used to perform controlled experiments 
for developing specific processes, e.g. calibration of model parameters. 

 

EXAMPLES: Chemical Transport Models (CTMs), emission inventories, data-fusion 
products, offline land surface models, plume dispersion models 

 

Evaluation of the different modelling and prior components is required to estimate their 
uncertainty for data assimilation purposes (see CHE D5.5, CHE D5.7), but also to assess 
priorities in the implementation of new model developments and new improved priors: 

 

3.2 Atmospheric transport 

Atmospheric transport models act as operators that link the atmospheric CO2 observations 
to the surface fluxes. Modelling atmospheric transport of CO2 is not trivial. The high 
heterogeneity in the surface fluxes lead to complex horizontal and vertical gradients in the 
atmosphere. As CO2 is a passive tracer, any small errors coming from meteorological 
input, numerical representation of transport processes or temporal spatial resolution can 
accumulate and become as large as the signal (e.g. atmospheric growth rate of around 
2ppm). Many efforts have been devoted to transport inter-comparison studies (e.g. 
TransCom experiments by Rayner and Law, 1995; Law et al., 1996; Gurney et al., 2003; 
Patra et al., 2008, Law et al., 2008, Stephens et al., 2007; Karion et al. 2019). Despite the 
recent decrease in the spread between the transport models (Gaubert et al, 2019), 
transport still remains a major source of uncertainty in atmospheric CO2 inversions (Basu 
et al., 2018).  

There are two main approaches in the representation of transport from large-scale to local 

plumes:  

¶ Offline transport (Chemical Transport Models): More flexibility in terms of options, but 
requires pre-processing of winds, in particular vertical wind is diagnosed through 
bottom-up mass balance. Yu et al. (2018) presents some of the limitations for the 
offline transport models. 

¶ Online transport (Numerical Weather Prediction models extended with a module 

allowing flexible definition of (passive) tracers): Emphasis on consistency and high-

resolution capability, instantaneous (time step) coupling, direct computation of winds 

1. Sensitivity experiments to assess impact of priors, their temporal and spatial 

distribution and their interannual variability or model changes on the atmospheric 

signal 

2. Model/product inter-comparison to benchmark new developments/priors 

3. Evaluation with indirect observations (e.g. atmospheric observations) 

4. Evaluation with direct observations (e.g. FLUXNET data) 
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and parameterization of unresolved convective and turbulent mixing, as well as 

potential access to other ESM components such as land and ocean. Online models 

can consider feedbacks between components and offer the possibility of joint 

atmospheric composition - meteorology data assimilation (e.g. assimilation of CO2 

plume observations affecting simulated winds). 

 

3.2.1 Eulerian transport models  

Advection schemes  

The horizontal and vertical transport that is resolved by Eulerian models is performed by 
advection schemes using wind information from an NWP model or NWP analysis. There 
are two main approaches: 

¶ Eulerian advection schemes are commonly used by offline chemical transport 

models (e.g. CHIMERE, Gavete et al. 2012) They are also common in mesoscale 

NWP models such as WRF (Wang, 2009) or COSMO (Schneider and Bott, 2014) 

and global NWP models (e.g. nonhydrostatic finite-volume dynamical core IFS, 

Kühnline et al., 2019).The timesteps are restricted by maximum CourantïFriedrichsï

Lewy (CFL) number criterion, implying short timesteps. They can be designed to 

conserve mass locally. 

¶ Semi-Lagrangian (SL) advection schemes are commonly used in global NWP 

models and online tracer transport models e.g. IFS (Diamantakis, 2014), COSMO-

GHG (Liu et al. 2017). They are very efficient for multi-species transport, with 

unconditional stability permitting long timesteps. However, they do not necessarily 

conserve mass locally, although solutions exist (Zerroukat, 2010). New versions of 

the scheme are being tested that are almost mass conservative (e.g. SL continuous 

mapping about the departure point in the IFS, see Malardel and Ricard, 2015). 

 

 

 

 

 

 

 

 

 

Unresolved transport: convection and turbulent mixing 
parameterisations 

Small-scale transport associated with convective and turbulent mixing processes 

cannot be resolved by global and regional models running at horizontal resolutions of 

10 to 1km and therefore requires a parameterization scheme: 

 

¶ Convective transport is based on NWP parameterizations designed to transport 

water tracers, heat and momentum with a mass flux formulation. Transport models 

can compute the convective transport by calling the NWP convection schemes or by 

Benchmarking:  

Test for positive definiteness, shape preservation (preserving monotonicity and/or 
convexity), amplitude preservation (low degree of numerical diffusivity), mass 
conservation. 
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using the mass fluxes archived by NWP models (e.g. Feng et al. 2011). The role of 

the convection scheme depends on the model resolution. 

¶ Shallow and deep convection are very efficient processes for the ventilation of tracer 

from the Planetary Boundary Layer (PBL) to the free troposphere (e.g. Yu et al., 

2018, Belikov et al., 2013). Transient convection and PBL ventilation can be sensitive 

to temporal resolution of the model (Yu et al., 2018). 

¶ Turbulent mixing distributes the anthropogenic emissions and natural fluxes from the 

surface throughout the PBL. Under stable conditions with low wind speeds, tracers 

remain trapped close to the surface. Modelling turbulent mixing under such 

conditions is very challenging (Sandu et al., 2013). Parameterizations of turbulent 

mixing can have a large impact on the wind speeds (Sandu et al. 2013), CO2 

concentrations (McGrath-Spangler et al., 2015) and plume dispersion from emission 

hotspots as shown by Large Eddy Simulations (LES, e.g. Gaudet et al., 2017). It is 

therefore crucial to improve the vertical profiles of winds and turbulence within the 

PBL to be able to model the plumes from hotspots (Karion et al. 2019). 

¶ The coupling of shallow convection and turbulent mixing is an important aspect of 

NWP (water and energy cycles) and tracer transport (affecting long-range transport 

of tracers, including CO2). ECMWF is addressing this coupling with the development 

of a more integrated physical parameterisation approach in the IFS which will be 

tested with CO2 and other tracers. 

 

 

Benchmarking: Use radon to assess convection and PBL mixing, model inter-comparisons 
and field experiments (e.g. GoAmazon model benchmark by Vila et al. 2019). 

 

 Lagrangian atmospheric dispersion models 

Lagrangian models (LMs) track the movement of fluid parcels in their moving frame of 

reference (Lin et al., 2011). The most comprehensive LMs are Lagrangian Particle 

Dispersion Models (LPDMs) such as FLEXPART (Pisso et al. 2019) or STILT (Lin et al., 

2003), which account for advective, turbulent and convective transport. LMs are known 

to create minimal numerical diffusion and thus are capable of preserving gradients in 

tracer concentration, for example in small-scale emission plumes. Additionally, 

Lagrangian integration is numerically stable, meaning that models can take bigger time 

steps. LPDMs can be run backward in time, allowing the computation of footprints 

(source-receptor sensitivities) as a basis for an analytical solution of the inversion 

problem. The downside is that LMs are computationally intensive when run for a large 

number of receptor points, which makes them less suited for the inversion of XCO2 from 

satellites. LPDMs are offline models that run with meteorological output from both global 

(e.g. FLEXPART-IFS) and regional NWPs (e.g. WRF-STILT, FLEXPART-COSMO). 
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3.2.2 Evaluation 

 

3.3 Biogenic fluxes 

There are three main approaches to estimate prior biogenic flux information based on 

statistical and biogeochemical models with differing degrees of model complexity and 

use of observations. They all have different advantages and disadvantages which are 

described in sub-sections below. However, all the methods rely on accurate input data, 

namely: 

¶ mapping of land use (e.g. plant functional type and vegetation cover)  

¶ satellite observations and ancillary Earth Observation (EO) data (e.g. albedo, 

FAPAR, LAI, vegetation indices, vegetation activity) 

¶ meteorological data 

 

Errors in the input data will lead to uncertainties and even biases in the biogenic fluxes, which 
could impact the estimation of anthropogenic emissions. Another key source of uncertainty in 
current biogenic models lies in the spatialization of parameters, which is usually done by Plant 
Functional Type (PFT). PFT makes models sensitive to PFT maps and it is an extremely poor 
way of spatializing biogeochemical parameters. Data-fusion product are less dependent on 
the fixed PFT structures. A systematic inter-comparison and assessment of the different 
approaches and the evaluation of the different products with FLUXNET data can help to 
benchmark the different approaches (section 4.2.4). While an ensemble of products could also 

be useful to provide an uncertainty estimate of the prior for the atmospheric inversion. 

 

 

3.3.1 Data-fusion products 

Data-driven products are designed to upscale the satellite and in situ observations of biogenic 
fluxes (NEE and GPP) using statistical regression models and predictors from other satellite 
products and NWP analysis. This approach allows a direct link with observations and non-
prescribed relationships between fluxes and drivers/predictors unlike process-based models.  

However, it can be challenging to estimate signals on such a wide range of different timescales 
(e.g. from hourly to annual/decadal) which might not be well represented by the predictors in 
the regression leading to underestimation of the seasonal cycle (Running et al., 2004) or the 
inter-annual variability (Jung et al., 2019). 

 There are multiple types of data-fusion products: 

¶ NEE and GPP FLUXCOM product based on machine learning methods that upscale the 

eddy covariance measurements (see D3.2; Tramontana et al. 2016; Jung et al., 2017; 

Bodesheim et al., 2018; Walther et al., 2019). Ecosystem respiration is generally taken 

as the residual of NEE and GPP. The main advantage of FLUXCOM is that it makes 

direct use of in-situ FLUXNET data; makes it is easy to use different EO data streams 

(e.g. SIF); it is extremely data-adaptive compared to a fixed model structure; and it 

Transport model inter-comparison, use of multiple tracers to extract common errors based 
on direct evaluation of 4D tracer and wind fields with observations (e.g. CoMet field 

campaign). 
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facilitates the derivation of the error covariance parameterizations as it is based on the 

in-situ FLUXNET data. The main disadvantages are the propagation of potential biases 

in the in-situ FLUXNET data, and the difficulty to make it operational and include it in a 

full FFDAS like system.  

¶ GPP satellite products based on statistical models using solar-induced chlorophyll 

fluorescence (SIF) (Joiner et al., 2018). SIF is  provided by many current and future 

satellites (including  CO2M). It is considered an important constraint for the natural 

fluxes and thus it would help with the attribution of the CO2 emissions/sinks. 

¶ GPP satellite products based on simplified light use efficiency (LUE) models (Zhang et 

al., 2017). 

 

3.3.2 Simplified models 

Simplified diagnostic models use empirical parameters to represent response of plants to 
atmospheric drivers from NWP models and satellite data, and fixed look-up tables for the 
empirical parameters: 

¶ The photosynthesis models are based on light-use-efficiency models. In CHE, such 

simplified models include the Vegetation Photosynthesis and Respiration Model (VPRM, 

Mahadevan et al. 2008, see D2.3), SDBM (Knorr and Heimann, 1995), and the A-gs 

model (Jacobs et al, 1996, 2007; Boussetta et al., 2013). 

¶ The ecosystem respiration component is based on an empirical formulation (Boussetta 

et al., 2013). 

¶ The advantage of such empirical models is that they have few parameters that can be 

optimized in a CCDAS approach (e.g. Kaminski et al., 2017). Due to their simplicity and 

low cost, they are also suited to run at high resolution (e.g. down to 1km for VPRM 

simulations in CHE, see D2.3) and in NRT (e.g. Agusti-Panareda et al., 2019). Because 

these models are usually diagnostic and they miss complex biochemical processes, 

they cannot be used in climate simulations. 

 

 

3.3.3 Dynamic Global Vegetation Models (DGVMs) 

DGVMs are complex biogeochemical models of terrestrial vegetation that are designed to 
represent the mechanistic processes of enzime kinetics associated with photosynthesis 
(Farquhar et al, 1980) and ecosystem respiration based the representation of carbon pools 
(e.g. JULES, LPJ-GUESS, NCAR-CLM4, ORCHIDEE, OCN, SDVGM, VEGAS, JSBACH, 
BETHY).  

¶ The advantage of these DGVM is the inclusion of many biogeochemical processes and 

prognostic equation of the evolution of vegetation with time. Therefore, they can be 

used to run simulations over climate timescales (e.g., Sitch et al., 2008). 

¶ The limitations include the high complexity of the DGVMs (Prentice et al., 2007) which 

include many highly uncertain processes and parameters leading to a large spread 

between models (e.g. Sitch et al., 2008, 2015). 

 



C02 HUMAN EMISSIONS 2020  

 

D5.4 Final report on service elements for CO2 emission and transport model integration  16 

3.3.4 Evaluation 

 

 

3.4 Anthropogenic emissions 

Anthropogenic emissions grouped into a single source category provide a clear atmospheric 
signal and offer a simple option for modelling and attribution. However, a single category is no 
longer sufficient when considering the modelling of emissions, co-emission factors and 
uncertainties. Further detail can be gained by dividing emissions into sub-categories. For 
example, the daily temporal distribution of residential heating emissions can be modelled 
separately, using the heating degree day approach (e.g. Guevara et al., 2019a). Emissions 
from certain sectors (e.g. transport) are abundant in co-emitted species, which could provide 
additional information for sector specific attribution. The uncertainty associated with some 
sectors (e.g. energy) is significantly smaller than other sectors (e.g. solid waste incineration). 
For these reasons it is recommended that anthropogenic emissions be grouped into sectors, 
which can either be individually modelled and/or are representative of specific co-emitted 
species and specific uncertainties. The budget of each group must also be sufficiently large to 
generate a detectable modelled atmospheric signal, which is essential for source attribution. 
The following seven categories are recommended, super power stations, typical power 
stations, manufacturing/industry, residential combustion (settlements), aviation, non-aviation 
transport and other (Table 1). 

 

3.4.1 Emission inventories based on Tier 1, Tier 2 and Tier 3 IPCC reporting  

 

Anthropogenic emissions are typically derived with varying degrees of methodological 
complexity following IPCC (2006) guidelines. The estimated emissions per sector and country 
are the product of activity data (e.g. energy statistics) and an estimation of the quantity of 
emissions per unit activity (emission factor). The complexity by which the emissions are 
derived can be grouped into either tier-1 (basic), tier-2 (intermediate/technology-specific) or 
tier-3 (detailed/modelled) methodologies. Similarly, the spatial gridding of the estimated 
emissions can range in quality from tier-1 to tier-3 depending on the appropriateness of the 
spatial proxy being used for each sector, as reported by the EMEP/EEA (2016) guidelines. 
When comparing different emission inventories, studies sometimes show that the total amount 
of CO2 emissions are quite similar but that strong discrepancies appear in their spatial 
distribution (e.g. allocation of CO2 emissions related to residential heating or location of 
industries, Cai et al., 2018).   

At a global scale the state-of-the-art emission inventory (Janssen-Maenhout et al. 2019, 
Choulga et al., 2020) adopts a tier-1/2 methodology; however more detailed information at the 
regional scale permits tier-2/3 methodologies to be adopted by European or national scale 
inventories (CHE D2.3). The methodology adopted by the selected inventory can inform 
uncertainty information. 

Inter-comparison of FLUXCOM, SDBM, VPRM, A-gs (CTESSEL), ORCHIDEE, CASA-
SiB, SiB4, etc with FLUXNET data. The caveat of this evaluation is the representation 
error, which could only be resolved if each model was run at the FLUXNET sites with the 
same observed forcing (see recommendations in section 5). 
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Other tier-3 regional inventories are available for the USA (Vulcan, Gurney et al. (2009), and 
HESTIA, Gurney et al., 2019), Canada, South America and China (e.g. CHRED, Cai et al, 
2018). New tools are being developed to make use of this mosaic of regional inventories by 
combining them with global inventories like EDGAR at the global scale and processing them 
for use in atmospheric transport models (e.g. HEMCO by Keller et al., 2014 and HERMES by 
Guevara et al., 2019a). An example of such a merged mosaic inventory is HTAPv2.2 
(Janssens-Maenhout et al., 2015). However, as inventories may differ in e.g., sector 
definitions, distribution proxies, etc. specific attention is needed to assure consistency across 
the domain.  

 

Table 1 Anthropogenic CO2 emission sectors, their global budget and co-emitters (see Table 1 
from Janssen-Maenhout et al. (2019) for a description of the EDGAR sectors). 

ECMWF 
group 

EDGAR 
sector 

IPCC2006 
activity 

Global budget1 Co-emitters 

Total 
Mton 

Uncertainty 
% 

NOx CO PM2.5 

ENERGY_S ENE 1.A.1.a 
(subset) 

897 -7/+2 V x2  

ENERGY_A ENE 1.A.1.a (rest) 11ô672 -7/+7 V X2  
SWD-INC 4.C 137 -40/+40 V V V 

MANUFACTURING IND 1.A.2 7ô329 -7/+7 V V V 
IRO 2.C.1, 2.C.2 234 -31/+31    
NFE 2.C.3, 2.C.4, 

2.C.5, 2.C.6, 
2.C.7 

91 -43/+72    

NEU 2.D.1, 2.D.2, 
2.D.4 

25 -58/+127    

NMM 2.A.1, 2.A.2, 
2.A.3, 2.A.4 

1ô749 -42/+70    

CHE 2.B.1, 2.B.2, 
2.B.3, 2.B.4, 
2.B.5, 2.B.6, 
2.B.8 

677 -50/+82    

SETTLEMENTS RCO 1.A.4, 1.A.5.a, 
1.A.5.b.i, 
1.A.5.b.ii 

3ô323 -11/+11 x3 

 
V V 

AVIATION TNR-
Aviation-CRS 

1.A.3.a_CRS 412 -21/+70 V x4 

 
 

 

1 CO2 emission budgets are based on the global emission maps used in the CHE project 

 
2 Power plants show high energy efficiency of the combustion at high temperature. Therefore they emit 
little CO but do they emit NOx. However, the de-NOx ï de-SOx abatement can show high efficiencies 
in the range of 96-99%. 
 
3 Residential heating systems can vary, but if locally implemented, a boiler at home is not showing the 
same high temperature combustion as the power plants and so can have lower efficiency combustion 
with emission of CO and less NOx 
 
4  The turbines of airplanes are typically having a higher temperature combustion, with rather NOx 
emissions than CO 

Benchmarking:  

Comparison of EDGAR and TNO inventories and links to UNFCCC over European domain 
and with non-European tier-3 inventories if available. 
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TNR-
Aviation-CDS 

1.A.3.a_CDS 306 -14/+47 V x  

TNR-
Aviation-LTO 

1.A.3.a_LTO 98 -12/+38 V x  

TRANSPORT TRO 1.A.3.b 5ô531 -4/+4 V V V 
TNR-Ship 1.A.3.d 819 -35/+49 V V V 
TNR-Other 1.A.3.c, 1.A.3.e 255 -29/+98 V V V 

OTHER REF-TRF 1.A.1.b, 
1.A.1.c, 
1.A.5.b.iii, 
1.B.1.c, 
1.B.2.a.iii.4, 
1.B.2.a.iii.6, 
1.B.2.b.iii.3 

1ô918 -32/+144  V V 

 

3.4.2 Emission vertical profiles 

Local sources from power plants and industrial facilities are not emitted at surface but from 
chimney stacks with heights from 100 to 200m above the ground and at high temperatures 
their plumes can rise higher (Brunner et al., 2019). Emission vertical profiles and plume rise 
models are regularly used in regional air quality models (e.g. Bieser et al., 2011; Guevara et 
al., 2014) and they have been shown to have a significant impact on surface CO2 and XCO2 
over Europe (Brunner et al., 2019). The tracer injection heights are usually computed with a 
plume rise model and input stack parameters like stack height, effluent temperature, and 
volume flux. This information is not available for the point sources over the globe and therefore 
some assumptions would be required to use the plume rise model on a global domain. 

Emitting from a point source is not the same as emitting over a model grid cell of 10kmx10km 
as used currently by the IFS. Further testing of the plume rise model needs to be done to 
understand the impact of horizontal and vertical resolution on the most effective vertical 
allocation of the point source.  

 

 

3.4.3 Emission temporal profiles 

Accurate modelling of anthropogenic emissions requires detailed high-resolution temporal 
profiles, which are often unavailable. Offline emissions are typically constant at annual 
(EDGAR v4.3.2, Janssen-Maenhout et al., 2019) or monthly (EDGAR v4.2FT2010) 
timescales. Higher temporal frequency can be included online using prescribed functions for 
weekly and hourly timescales (e.g. biomass burning diurnal cycle implemented in CAMS). 
CHE regional models apply such fixed temporal profiles over Europe (Liu et al., 2017). Global 
models generally do not use such high frequency profiles because it can also introduce high 
uncertainty, as this variability is largely dependent on country and/or climatic zones. Some 
generic profiles have been derived for specific regional inventories (e.g. Nassar et al., 2013, 
Denier van der Gon et al, 2011, Pouliot et al, 2012) and CAMS is now producing global and 
regional gridded temporal profiles for monthly, weekly, daily and hourly timescales for several 
species (e.g. NO2, CO, PM2.5, CO2, CH4) and sectors based on activity data from a range of 
countries. For CO2 gridded temporal profiles for energy, transport and residential heating are 
available. Given the high I/O requirements of using high temporal resolution emissions for the 
different sectors, the current strategy is to use monthly emission datasets and integrate the 
higher resolution temporal profiles (i.e. weekly, daily and hourly variations) in the model. 

Benchmarking: 

 Assessment of impact of sector dependent vertical profiles on atmospheric CO2 variability 
(e.g. Brunner et al. 2019). 
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3.4.4 Modelling fossil fuel emissions (FFDAS approach) 

A fossil fuel data assimilation system offers the potential to constrain the spatial distribution of 
anthropogenic emissions in NRT. National statistics or nightlight observations can be used to 
constrain emissions based on variables such as population density, economic activity or traffic 
activity data. Models such as these (e.g. Rayner et al., 2010) can be used to either inform prior 
emissions for use in atmospheric models or they can be combined with atmospheric models 
and atmospheric observations of CO2 for parameter optimisation, which can provide posterior 
flux information. 

For certain sectors, such as residential heating, temporal profiles can be derived online using 
temperature values from the model atmospheric fields (e.g. Matthias et al., 2018; Guevara et 
al., 2019b). These can be used to update emissions at high temporal frequency. Atmospheric 
variables could also be used to inform energy emissions, through variability in demand. Online 
emissions need to be carefully configured to ensure the global budget in the model is 
conserved, this may require the model to be run in reanalysis mode using historical 
meteorological data. The advantage of this approach is that it provides a very efficient spatial 
and temporal disaggregation of the emission statistics. 

Future developments should focus on a synergy between modelling trace gas emissions and 
urban schemes for numerical weather prediction (NWP). Urban schemes for NWP have 
varying degrees of complexity and can be considered as either slab tiles, single layer canopies 
or multi-layer canopies. The more basic slab (e.g. Best, 2005) and single layer canopy models 
(e.g. Porson et al 2010) could be used on a global scale using only a few parameters, which 
are currently available from providers (e.g. urban fraction). These produce surface 
temperatures, which would inform a residential emissions model. More complex emission 
models which require more variables may be dependent on complex multi-layer urban canopy 
models (e.g. Masson et al., 2000). Efforts have already begun to combine these local scale 

urban schemes with a CO2 emission model (Goret et al., 2019). 

 

3.4.5 Co-emitted species and other tracers for source/sink attribution  

Combustion processes, which are an important anthropogenic source for CO2, co-emit 
chemically reactive species that play an important role in the chemistry of the atmosphere. 
Because of the rapid chemical conversions and removal processes, the spatio-temporal 
gradients of these species are often more pronounced than the gradients of CO2, and they are 
much less influenced by biogenic activity. These two aspects make the reactive species good 
markers for anthropogenic emissions from different sectors (listed in Table 1). Important 
examples of the co-emitted species are nitrogen oxide (NO), nitrogen dioxide (NO2), carbon 
monoxide (CO) and sulphur dioxide (SO2). Most of these species are observed with the air 
quality in-situ network at the surface and with satellite instruments. In particular, NO2 can be 
monitored at a high spatial (e.g. TROPOMI, Eskes et al., 2019) and temporal resolution (e.g. 

Benchmarking:  

Assessment of impact of residential heating profiles in CHE nature run on atmospheric 
CO2 variability. 

Benchmarking:  

Assessment of impact of fixed emission temporal profiles on atmospheric CO2 variability 

(e.g. Liu et al. 2017). 
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Sentinel 4) with current or planned satellite missions. Another approach for the fossil fuel 
attribution is to use the radioactive isotope of carbon (14CO2) from in situ observations (CHE 
D4.1) which is depleted in fossil fuels, or Atmospheric Potential Oxygen (APO) which is based 
on the variation of oxygen to nitrogen ratio associated with fossil fuel combustion (see CHE 
D4.1 and CHE D4.3 for further details). 

 

¶ CO and NOx are co-emitted by combustion processes (e.g. energy production, 

transport, residential heating) and therefore can provide information on attribution of 

specific sectors (see Table 1, CHE D4.3). We require prior information of co-emitted 

species in terms of emissions, atmospheric sink associated with chemistry, 

atmospheric initial conditions and/or emission factors (depending on the definition of 

the control vector in data assimilation). Emission factors depend on sector and fuel 

type (for CO2) and on technology (for NOx, CO, PM2.5) and differ amongst regions 

and even within one country. Therefore, they are highly uncertain. The key question 

is whether regional spatial averages of sectoral emission factors are well 

characterized or whether they are chaotic (i.e. not stable) like emitter-to-emitter 

variations. The activity data show large temporal and spatial variability and therefore 

they can become highly uncertain. The initial and boundary conditions are available 

from the CAMS re-analysis (Inness et al., 2019). 

¶ Radiocarbon is potentially a very useful marker to trace fossil fuel emissions. 

However, it is a complex tracer to model (see CHE D4.3) with limited availability of 

observations (CHE D5.1). This requires representation of sources (cosmogenic and 

nuclear power), as well as the adaptation of the atmospheric CO2 and anthropogenic 

emissions (fossil fuel and bio fuels), ocean fluxes, biomass burning and biogenic CO2 

flux model in order to represent the isotope fractionation associated with all the 

processes (Wang, 2016; Wang et al., 2018). Initial conditions and boundary 

conditions for regional models are also required. In CHE they have been provided by 

the LMDZ simulation of Wang (2016). 

¶ Atmospheric Potential Oxygen (APO) is also a complex tracer to model with limited 

availability of observations (see CHE D4.3), requiring information on: O2 consumption 

flux from anthropogenic emissions (fossil fuel, biofuel); the O2:CO2 ratio of terrestrial 

biospheric exchange (per biome and soil type);  gridded ocean CO2, O2 and N2 

fluxes; biomass burning O2/CO2 ratios (based on CO:CO2 ratios); and photochemical 

CO and CH4 oxidation from reaction with OH (associated with net loss of 

atmospheric O2). Finally, atmospheric initial and boundary conditions are also 

required as input. In CHE, these have been obtained from the Jena Carboscope 

inversions (Rödenbeck et al, 2013). 

¶ Carbonyl Sulfide (COS) is a tracer that can be used to constrain gross primary 

productivity associated with photosynthesis by vegetation (Launois et al., 2015). The 

observations available are described in D5.1. The model requirements comprise: 

atmospheric sink, its ocean emissions, its soil fluxes, its anthropogenic emissions, its 

biomass burning emissions and the leaf relative uptake ratio of COS to CO2 fluxes. 
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3.4.6 Evaluation 

 

 

3.5 Biomass burning emissions 

Fire is an essential component of the Earth system contributing significant amounts of 
greenhouse gases, trace gases and particulate matter to the atmosphere. Satellite 
measurements of global fires provide information on the location and timing of active fires and 
can be used to estimate emissions using observations of either the burnt area (BA) or fire 
radiative power (FRP). In both cases these observations are used to estimate the dry matter 
consumed by fire which is used in the emission estimation based on vegetation type and 
emission factors derived from laboratory and field studies. Currently available datasets of fire 
emissions use both burned area (e.g., Global Fire Emissions Database, GFED) and FRP (e.g., 
Global Fire Assimilation System, GFAS; Fire INventory from NCAR, FINN). Total estimated 
emissions are generally consistent between the two approaches and the choice of which 
method to use depends on the application: the BA approach provides information on extent of 
burning in addition to the emissions but is not available in NRT; the FRP approach is available 
in NRT and is more suitable for operational applications. Improvements in estimating global 
fire emissions are anticipated in the near future through the use of real-time satellite 
observations from geostationary and LEO orbits, improvements in vegetation/land cover 
maps, and improved emission factors from laboratory and field studies. 

3.6 Ocean fluxes 

Ocean CO2 fluxes can also be estimated using data-fusion methods with pCO2-based 
products (e.g. Takahashi et al., 2009) or global ocean biogeochemistry models (GOBMs): 

¶ The GOBM represent the physical, biological and chemical processes that control the 

CO2 concentration in the ocean (e.g. CCSM-BEC, Doney et al. (2009); MICOM-

HAMOCC, Schwinger et al., 2016; MITgcm-RecoM2, Hauck et al., 2016; MPIOM-

HAMOCC, Mauritsen et al., 2019; NEMO-PISCES (CNRM), Berthet et al., 2019; NEMO-

PISCES (IPSL), Aumont and Bopp, 2006; NEMO-PlankTOM5, Buitenhuis et al., 2010). 

Like the DGVMs they require inputs for the atmospheric forcing (e.g. from NWP re-

analysis). They are complex costly models, with prognostic skill to run in climate 

simulations. 

¶ Data-based products are designed to exploit all the available pCO2 observations over the 

ocean from the SOCAT database using either neural networks (e.g. Landschützer et 

al.,2015) or simple parameterizations of the ocean mixed layer (e.g. Rödenbeck et al., 

2014). 

A comparison between the annual ocean CO2 sink from GOBM and pCO2 flux products shows 
there is consistency in the underlying variability (Le Quéré et al., 2018, Friedlingstein et al., 
2019). 

 

¶ Inter-comparison of emission data sets (e.g. EDGAR, TNO) 

¶ Input of atmospheric modeling on the sensitivity of the used spatial distribution, 

the temporal profiles 

¶ Consistency between emission fields of CO2 and of co-emitted species 

¶ Check on the sub-regional detailed inventory and the same region of the global 

inventory ï the total is constrained at country level.  

¶ Explore information in additional tracers like C14, APO. 
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3.7 Atmospheric chemistry 

Modelling combustion short-lived species (CO and NOx) to infer CO2 sources requires the 
simulation of the chemical conversions, removal processes and the emissions in the 
atmosphere. Of particular importance are the fast chemical conversions between the emitted 
but very-short lived NO and the longer lived but well-observed NO2 in the presence of other 
chemical species such as ozone and OH. Chemical schemes comprising of 50-120 species 
have been integrated in the IFS as part of the GEMS, MACC and CAMS projects (Flemming 
et al, 2015, Huijnen, et al. 2019). The IFS in CAMS configuration is used operationally to 
forecast atmospheric composition and to assimilate satellite retrievals of NO2, CO, ozone, SO2 
and Aerosol Optical Depth (Inness et al. 2019). 

But, the computational cost of the chemical schemes is considerable, which may require the 
development of computationally affordable but still adequate versions of the chemistry scheme 
for the application in CHE. The development of simplified schemes is already a growing 
research focus in CAMS because affordable schemes are intended to be used to better 
represent atmospheric chemistry in the tangent-linear and adjoint formulation of the IFS 
applied in the 4DVAR data assimilation approach. For example, the development of a 
surrogate model for chemistry using machine learning algorithms will be developed as part of 
a NASA project run by University of Colorado in collaboration with ECMWF.  

4 Progress in integration and recent developments  

The integration of the different model and prior components of the CO2MVS depicted in 
Figure 1 has been tested in the context of various CHE nature run simulations of CO2 and 
co-emitters (CHE D2.1, D2.2, D2.4, D2.6, D2.8). This integration relies greatly on the 
consistent mapping of the land surface cover which provides inputs to the inventories, the 
numerical weather prediction model and the vegetation model (as indicated by the arrows in 
Figure 1). These and other aspects that play an important role in the realism of the 
simulations are presented here to illustrate the progress and challenges that will need to be 
addressed in the implementation of the CO2MVS during the follow-on project CoCO2.  

The coupling of the different components in the framework of Earth System Modelling 
depicted in Figure 2 is still ongoing.  The CO2MVS will benefit from the integration with NWP 
in order to improve the accuracy of tracer transport. Section 4.1 presents recent 
developments in the tracer advection scheme of the Integrated Forecasting System at 
ECMWF on which the CO2M observation operator of the global CO2 MVS will be based. 
Highlights of the multi-scale and multi-species simulations focusing on plumes from emission 
hotspots are provided in section 4.2, emphasizing the benefits and challenges of using co-
emitted species, as well as temporal and vertical variability of emissions. Section 4.3 
presents the new developments of the urban model in the IFS which will allow to compute 
residential heating emissions online with high temporal and spatial resolution. The 
importance of the biogenic fluxes in explaining the atmospheric CO2 signal and the mapping 
activities affecting the biogenic fluxes are presented in section 4.4. The integration of specific 
emission sectors such as residential heating and biogenic fluxes in the ESM will improve the 
consistency between emissions and sinks of CO2 and atmospheric transport in the 
CO2MVS. This will result in a better representation of the rectifier effect (Denning et al., 
1999, Liu et al., 2017) and therefore it will make the modelling more realistic.  

 

4.1 Numerical schemes and parameterisation of atmospheric tracer transport  

 

The atmospheric inversion system in the MVS relies on the accurate representation of 
atmospheric tracer transport as the operator that translates the information of observed 
atmospheric concentrations to natural surface fluxes and anthropogenic emissions. In 
particular,  numerical errors in the transport model, including tracer and total air mass 
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conservation (Agusti-Panareda et al., 2017), numerical diffusion (Eastham and Jacob, 2017) 
and parameterization of sub-grid scale processes (Yu et al., 2018) affect all tracer transport 
models to various  degrees, potentially leading to regional biases that are difficult to diagnose 
and will impair the reliability of the inversion results. Therefore, the evaluation of numerical 
and physical parameterisation schemes in transport models remain a priority. For example, 
the IFS tracer transport is known to be very efficient and robust, but suffers from mass 
conservation errors which are addressed in the CAMS atmospheric composition analysis and 
forecasting system with a mass fixer (Diamantakis and Agusti-Panareda et al., 2017). An 
alternative interpolation method for the standard semi-Lagrangian advection scheme 
(COMAD, Malardel et al., 2015) that introduces the concept of cell-averaging and improves its 
conservation properties will be tested and further adapted for CO2 and other tracers in the IFS. 
Figure 3 shows some preliminary results of the COMAD advection in the IFS which leads to  
a smaller XCO2 correction by the mass fixer than the standard semi-Lagrangian advection. 

 

  

Figure 3 Accumulated XCO2 mass fixer correction [ppm] for the new COMAD semi-Lagrangian 
advection scheme (left) compared to the standard scheme used operationally in  CAMS CO2 
analysis and forecasts and in the CHE nature runs (right) after one month of simulation in 
January 2015. 

 

Atmospheric boundary layer mixing is another aspect of transport models that urgently 
requires further investigation. Most inversion systems are only able to assimilate observations 
near the surface during the afternoon when well-mixed conditions are prevalent, because of 
the large uncertainty of turbulent mixing under stable conditions. Using tracers like radon 
(Williams et al., 2011) which have a distinct concentration in the boundary layer and free 
troposphere can help to diagnose transport errors near the surface (Chambers et al., 2015). 
The correlation between radon concentrations measured at the ICOS sites and the boundary 
layer height (Figure 4) will be further exploited to investigate the transport model error in the 

boundary layer in the CoCO2 nature runs. 
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Figure 4 IFS simulation of hourly radon (222Rn) concentrations [Bq/m3] and atmospheric 
Boundary Layer Height (BLH) [m] at Trainou (France) (Schmidt et al., 2014) ICOS-Atmosphere 
Thematic Centre station for the period from 1 December 2019 to 28 February 2020. Radon 
observations [Bq/m3] are shown as black circles and simulated values are shown with coloured 
circles based on two different emission datasets:  a climatology from Karstens et al. 2015 (red 
circles) and zonally averaged emissions used in the CAMS operational forecast (cyan circles). 

 

4.2 Plume simulations with co-emitted species 

 

Power plants are an important source of CO2. In Europe, approximately 50% of CO2 is emitted 
from power plants and other point sources through stacks (Brunner et al., 2019). As illustrated 
in Figure 5 showing simulated column mean dry air mole fractions XCO2 over Germany on 2 
November 2015, these point sources generate a large number of plumes with pronounced 
local enhancements in XCO2 that can potentially be imaged by the CO2M mission. An 
important question is thus, how well such plumes can be simulated by atmospheric transport 

models and what resolution is required to properly represent their main characteristics. 

 


































