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1 Executive Summary 

The CHE prototype is designed to estimate carbon dioxide (CO2) emissions using a modelling 
framework to link all the CO2 relevant observations with prior knowledge of the anthropogenic 
emissions and other natural fluxes that affect the observed atmospheric CO2 signal. The 
modelling aspects include atmospheric transport, atmospheric chemistry and land surface and 
ocean biogeochemical and transport processes, as well as statistical models of anthropogenic 
emissions of CO2 and co-emitted species based on human activity data. A multi-scale, multi-
species and multi-stream approach is required to target the various types of CO2 emissions 
and natural fluxes, and their wide range of scales from point sources to cities, 
regions/ecosystems and countries. Different transport schemes suited for the different 
applications from local to global scales are listed and their challenges are described. The 
various approaches to estimate biogenic fluxes and anthropogenic emissions that serve as 
prior information are reviewed with their strengths and weaknesses. A comparison of the 
different transport models and prior datasets is proposed to assess the different capabilities 
of the models and priors used to perform the CHE library of simulations. Integration of the 
various components in the framework of Earth System Modelling is ongoing, with new 
developments on tracer transport modelling, simulations of plumes from emission hotspots, 
and urban modelling, among others. The full integration of the modelling and prior components 
towards a CO2 Monitoring and Verification Support (MVS) capacity will be presented in a final 

report on the design of the CHE prototype. 

 

2 Introduction 

2.1 Background 

The CHE prototype aims at building a system to monitor the exchange of carbon dioxide (CO2) 
and potentially other important man-made greenhouse gases like methane (CH4) between the 
Earth surface and the atmosphere with the use of observations (mostly in the atmosphere), 
models and prior information, as well as their uncertainties to leverage the different sources 
of information. The system is designed to support the Paris Agreement and follows the 
directive of the European Commission CO2 Task Force (Pinty et al., 2017). The general 
strategy and rationale for the CHE prototype is provided in CHE D5.9, stemming from the 
discussions in the first WP5 workshop (Reading, 25-26 September 2019). The main 
challenges are addressed with the following recommendations: 

• Multi-scale approach to monitor emission from point sources (power stations or 

industrial facilities), cities and countries using different model domains from global to 

regional and to local model resolutions (e.g. from 25km to 100m). 

• Multi-species approach to detect and attribute the observed atmospheric signal to 

specific sources/sinks (e.g. natural and anthropogenic emissions with sectorial 

distribution). 

• Multi-stream approach to support different applications and users with a near-real 

time (NRT) stream focusing on shorter synoptic timescales designed to provide early 

warnings and giving feedback to data producers, and a re-analysis stream that uses 

consolidated quality-controlled data, products and models with their associated 

uncertainties to estimate trends. 

 

This report focuses on the modelling and prior components of the prototype. It complements 
the reports on Earth observations (CHE D5.2), data assimilation methodology (CHE D5.6) and 
uncertainty representation (CHE D5.8). Modelling and prior information encapsulate our 
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current knowledge and understanding of physical (e.g. atmospheric transport), biological (e.g. 
photosynthesis and ecosystem respiration) and chemical processes (affecting co-emitted 
reactive species like nitrogen oxides (NOx), carbon monoxide (CO) and methane (CH4), as 
well as human activity (e.g. fossil fuel energy production) that control the CO2 exchange 
between the earth surface and the atmosphere. This knowledge and information are crucial to 
fill the gaps in the observing system and connect observations with the CO2 emissions and 
natural fluxes that need to be monitored.  

The different model components and prior information of the emissions are shown in Figures 
1 and 2. Some model components will play a role of observation operators (linking 
observations to CO2 fluxes) and others will provide prior flux information in the data 
assimilation process described in CHE D5.6. The individual components can be either coupled 
or integrated together in the forward model configuration which propagates the information 
from the surface fluxes to the atmospheric CO2 concentrations forward in time. In an offline 
system (Figure 1), the components are connected through input/output streams. The 
components are designed to be run separately without allowing for feedbacks. In online 
models (Figure 2) the components are fully integrated, ultimately becoming an Earth System 
Model. They share the mapping and input data, ensuring consistency between components 
and they can interact with each other, allowing for the representation of complex feedbacks. 
The degree of coupling or integration can vary between different models and configurations.  
Offline models are faster and not as costly to run as ESMs. Whereas online models based on 
prognostic equations can be used to predict the atmospheric CO2 state forward in time from 
days (e.g. Agusti-Panareda et al., 2014) to decades (e.g. Friedlingstein et al., 2006). 

Section 3 provides a detailed description of the essential components in the model and prior 
information for the prototype. The strategy for their implementation in the protype is outlined 
in section 3.1. The model components are grouped into atmospheric transport which affects 
all the atmospheric tracers (section 3.2) and prior fluxes and other processes (e.g. chemistry) 
which vary depending on the species (section 3.3). Model development is essential to ensure 
a more accurate interpretation of observations and a more accurate representation of prior 
information. For example, the hourly to daily variation of the CO2 signal from biogenic fluxes 
and anthropogenic emissions is often correlated with the signal from atmospheric transport. 
These processes need to be understood and represented in the model to be able to interpret 
the high temporal and spatial variability in the observed CO2. In this report, the different 
challenges are addressed by going through the different components in the model, listing their 
options for implementation in the prototype and the approaches to evaluate their accuracy. 
Recent developments on tracer transport modelling, plume simulations from emission 
hotspots, urban modelling and biogenic fluxes from vegetation are highlighted in section 4. 
Sections 5 and 6 list the immediate requirements for the implementation of the prototype by 
2023 and the research needs for the next 5 to 10 years. A summary of the immediate priorities 
for further development in the prototype is provided in section 7. 
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Figure 1 Offline approach to modelling and prior information provision with different components 
originating from independent models or products. The arrows denote the input/output channels of the 
different components (depicted as square boxes), which result in data products (in cylindrical shapes). 

 

 

Figure 2 Online approach to modelling and prior information provision with different components 
integrated in Earth System Model. The same shapes are used as in Figure 1 to denote components 
and products. The input/output channels of the different components within the Earth System Model 
are depicted by thin arrows and the thicker arrow represents external inputs. 
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2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

In this report we will describe the strategy to represent the modelling and prior information 
aspects in the monitoring system. The different options for the modelling of transport and prior 
products for operational use and for research and development purposes are described. 
Finally, priorities for implementation by 2023 and for longer term research needs will be 
outlined, together with future plans for the final report, including the evaluation of the transport 
models and prior CO2 fluxes used in the CHE nature runs. 

2.2.2 Work performed in this deliverable 

Synthesis of modelling aspects in CHE, CAMS, VERIFY and other ESA-funded projects as 

well as literature on carbon cycle and transport models. 

2.2.3 Deviations and counter measures 

Not applicable. 

3 Modelling and prior components of the CHE prototype 

3.1 Implementation strategy 

The design of the CHE prototype requires the assessment of the different options for each 
component which depends on an implementation strategy. The implementation strategy for 

modelling and provision of prior information is based on three approaches: 

• HIGH RESOLUTION AND MULTI-SCALE CAPABILITY 

 

 Given the wide range of scales of CO2 signal (from point sources to hemispheric 
gradients), it is crucial to approach the problem with a high resolution and multi-scale 
monitoring capability (see D5.9). For prior anthropogenic emissions, point sources merit 
to be treated separately (e.g. power stations). Their total annual budget is usually well 
known and thus, it is distributed to the point source first, before applying a temporal scaling 
to modulate its variability on sub-annual timescales. The plumes from point sources will 
also require dedicated plume models, as global and regional models cannot resolve such 
small scales. 

EXAMPLES: From global Numerical Weather Prediction (NWP) models to plume 
dispersion models focusing on hotspots 

• ONLINE AND COUPLED MODELLING CAPABILITY  

The observed atmospheric signal is a result of the interaction between the signal of the 
flux and the atmospheric transport. Because both fluxes and transport have a high spatial 
and temporal variability, they often co-vary. Thus, it is crucial to represent this co-variability 
in space and time (e.g. rectifier effect). Biospheric fluxes depend on meteorological 
conditions, but also anthropogenic emissions are influenced by meteorology (e.g. heating 
demand, traffic). Thus, modelling the fluxes, meteorology and atmospheric transport online 
in a coupled mode is desirable because it allows an optimal consistency between 
components and it also has the potential to transfer information from one component to 
another (e.g. atmospheric concentration to winds).  For small-scale plumes, coupled data 
assimilation will be required to modify winds according to the observed plume. Otherwise, 
the MVS will be limited to plume imaging and mass-balance methods. 

EXAMPLES:  Coupled NWP models, Earth System Models (ESM)                                                                        
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• OFFLINE MODELLING CAPABILITY 

 

As the focus is on trends on decadal scales, it is crucial to be able to run long simulations. 
The interactions between the different components can also create difficulties in the 
attribution and calibration of parameters. Therefore, it is also crucial to develop an offline 
modelling capability as a research tool and to have the potential of running long re-analysis 
simulations at lower cost. Offline transport models also offer the possibility to use long DA 
windows as atmospheric CO2 and fluxes preserve the linearity assumption used in most 
DA methodologies. Offline models could also be used to perform controlled experiments 
for developing specific processes, e.g. calibration of model parameters. 

 

EXAMPLES: Chemical Transport Models (CTMs), emission inventories, data-fusion 
products, offline land surface models, plume dispersion models 

 

Evaluation of the different modelling and prior components is required to estimate their 
uncertainty for data assimilation purposes (see CHE D5.5, CHE D5.7), but also to assess 
priorities in the implementation of new model developments and new improved priors: 

 

3.2 Atmospheric transport 

Atmospheric transport models act as operators that link the atmospheric CO2 observations 
to the surface fluxes. Modelling atmospheric transport of CO2 is not trivial. The high 
heterogeneity in the surface fluxes lead to complex horizontal and vertical gradients in the 
atmosphere. As CO2 is a passive tracer, any small errors coming from meteorological 
input, numerical representation of transport processes or temporal spatial resolution can 
accumulate and become as large as the signal (e.g. atmospheric growth rate of around 
2ppm). Many efforts have been devoted to transport inter-comparison studies (e.g. 
TransCom experiments by Rayner and Law, 1995; Law et al., 1996; Gurney et al., 2003; 
Patra et al., 2008, Law et al., 2008, Stephens et al., 2007; Karion et al. 2019). Despite the 
recent decrease in the spread between the transport models (Gaubert et al, 2019), 
transport still remains a major source of uncertainty in atmospheric CO2 inversions (Basu 
et al., 2018).  

There are two main approaches in the representation of transport from large-scale to local 

plumes:  

• Offline transport (Chemical Transport Models): More flexibility in terms of options, but 
requires pre-processing of winds, in particular vertical wind is diagnosed through 
bottom-up mass balance. Yu et al. (2018) presents some of the limitations for the 
offline transport models. 

• Online transport (Numerical Weather Prediction models extended with a module 

allowing flexible definition of (passive) tracers): Emphasis on consistency and high-

resolution capability, instantaneous (time step) coupling, direct computation of winds 

1. Sensitivity experiments to assess impact of priors, their temporal and spatial 

distribution and their interannual variability or model changes on the atmospheric 

signal 

2. Model/product inter-comparison to benchmark new developments/priors 

3. Evaluation with indirect observations (e.g. atmospheric observations) 

4. Evaluation with direct observations (e.g. FLUXNET data) 
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and parameterization of unresolved convective and turbulent mixing, as well as 

potential access to other ESM components such as land and ocean. Online models 

can consider feedbacks between components and offer the possibility of joint 

atmospheric composition - meteorology data assimilation (e.g. assimilation of CO2 

plume observations affecting simulated winds). 

 

3.2.1 Eulerian transport models  

Advection schemes  

The horizontal and vertical transport that is resolved by Eulerian models is performed by 
advection schemes using wind information from an NWP model or NWP analysis. There 
are two main approaches: 

• Eulerian advection schemes are commonly used by offline chemical transport 

models (e.g. CHIMERE, Gavete et al. 2012) They are also common in mesoscale 

NWP models such as WRF (Wang, 2009) or COSMO (Schneider and Bott, 2014) 

and global NWP models (e.g. nonhydrostatic finite-volume dynamical core IFS, 

Kühnline et al., 2019).The timesteps are restricted by maximum Courant–Friedrichs–

Lewy (CFL) number criterion, implying short timesteps. They can be designed to 

conserve mass locally. 

• Semi-Lagrangian (SL) advection schemes are commonly used in global NWP 

models and online tracer transport models e.g. IFS (Diamantakis, 2014), COSMO-

GHG (Liu et al. 2017). They are very efficient for multi-species transport, with 

unconditional stability permitting long timesteps. However, they do not necessarily 

conserve mass locally, although solutions exist (Zerroukat, 2010). New versions of 

the scheme are being tested that are almost mass conservative (e.g. SL continuous 

mapping about the departure point in the IFS, see Malardel and Ricard, 2015). 

 

 

 

 

 

 

 

 

 

Unresolved transport: convection and turbulent mixing 
parameterisations 

Small-scale transport associated with convective and turbulent mixing processes 

cannot be resolved by global and regional models running at horizontal resolutions of 

10 to 1km and therefore requires a parameterization scheme: 

 

• Convective transport is based on NWP parameterizations designed to transport 

water tracers, heat and momentum with a mass flux formulation. Transport models 

can compute the convective transport by calling the NWP convection schemes or by 

Benchmarking:  

Test for positive definiteness, shape preservation (preserving monotonicity and/or 
convexity), amplitude preservation (low degree of numerical diffusivity), mass 
conservation. 
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using the mass fluxes archived by NWP models (e.g. Feng et al. 2011). The role of 

the convection scheme depends on the model resolution. 

• Shallow and deep convection are very efficient processes for the ventilation of tracer 

from the Planetary Boundary Layer (PBL) to the free troposphere (e.g. Yu et al., 

2018, Belikov et al., 2013). Transient convection and PBL ventilation can be sensitive 

to temporal resolution of the model (Yu et al., 2018). 

• Turbulent mixing distributes the anthropogenic emissions and natural fluxes from the 

surface throughout the PBL. Under stable conditions with low wind speeds, tracers 

remain trapped close to the surface. Modelling turbulent mixing under such 

conditions is very challenging (Sandu et al., 2013). Parameterizations of turbulent 

mixing can have a large impact on the wind speeds (Sandu et al. 2013), CO2 

concentrations (McGrath-Spangler et al., 2015) and plume dispersion from emission 

hotspots as shown by Large Eddy Simulations (LES, e.g. Gaudet et al., 2017). It is 

therefore crucial to improve the vertical profiles of winds and turbulence within the 

PBL to be able to model the plumes from hotspots (Karion et al. 2019). 

• The coupling of shallow convection and turbulent mixing is an important aspect of 

NWP (water and energy cycles) and tracer transport (affecting long-range transport 

of tracers, including CO2). ECMWF is addressing this coupling with the development 

of a more integrated physical parameterisation approach in the IFS which will be 

tested with CO2 and other tracers. 

 

 

Benchmarking: Use radon to assess convection and PBL mixing, model inter-comparisons 
and field experiments (e.g. GoAmazon model benchmark by Vila et al. 2019). 

 

 Lagrangian atmospheric dispersion models 

Lagrangian models (LMs) track the movement of fluid parcels in their moving frame of 

reference (Lin et al., 2011). The most comprehensive LMs are Lagrangian Particle 

Dispersion Models (LPDMs) such as FLEXPART (Pisso et al. 2019) or STILT (Lin et al., 

2003), which account for advective, turbulent and convective transport. LMs are known 

to create minimal numerical diffusion and thus are capable of preserving gradients in 

tracer concentration, for example in small-scale emission plumes. Additionally, 

Lagrangian integration is numerically stable, meaning that models can take bigger time 

steps. LPDMs can be run backward in time, allowing the computation of footprints 

(source-receptor sensitivities) as a basis for an analytical solution of the inversion 

problem. The downside is that LMs are computationally intensive when run for a large 

number of receptor points, which makes them less suited for the inversion of XCO2 from 

satellites. LPDMs are offline models that run with meteorological output from both global 

(e.g. FLEXPART-IFS) and regional NWPs (e.g. WRF-STILT, FLEXPART-COSMO). 
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3.2.2 Evaluation 

 

3.3 Biogenic fluxes 

There are three main approaches to estimate prior biogenic flux information based on 

statistical and biogeochemical models with differing degrees of model complexity and 

use of observations. They all have different advantages and disadvantages which are 

described in sub-sections below. However, all the methods rely on accurate input data, 

namely: 

• mapping of land use (e.g. plant functional type and vegetation cover)  

• satellite observations and ancillary Earth Observation (EO) data (e.g. albedo, 

FAPAR, LAI, vegetation indices, vegetation activity) 

• meteorological data 

 

Errors in the input data will lead to uncertainties and even biases in the biogenic fluxes, which 
could impact the estimation of anthropogenic emissions. Another key source of uncertainty in 
current biogenic models lies in the spatialization of parameters, which is usually done by Plant 
Functional Type (PFT). PFT makes models sensitive to PFT maps and it is an extremely poor 
way of spatializing biogeochemical parameters. Data-fusion product are less dependent on 
the fixed PFT structures. A systematic inter-comparison and assessment of the different 
approaches and the evaluation of the different products with FLUXNET data can help to 
benchmark the different approaches (section 4.2.4). While an ensemble of products could also 

be useful to provide an uncertainty estimate of the prior for the atmospheric inversion. 

 

 

3.3.1 Data-fusion products 

Data-driven products are designed to upscale the satellite and in situ observations of biogenic 
fluxes (NEE and GPP) using statistical regression models and predictors from other satellite 
products and NWP analysis. This approach allows a direct link with observations and non-
prescribed relationships between fluxes and drivers/predictors unlike process-based models.  

However, it can be challenging to estimate signals on such a wide range of different timescales 
(e.g. from hourly to annual/decadal) which might not be well represented by the predictors in 
the regression leading to underestimation of the seasonal cycle (Running et al., 2004) or the 
inter-annual variability (Jung et al., 2019). 

 There are multiple types of data-fusion products: 

• NEE and GPP FLUXCOM product based on machine learning methods that upscale the 

eddy covariance measurements (see D3.2; Tramontana et al. 2016; Jung et al., 2017; 

Bodesheim et al., 2018; Walther et al., 2019). Ecosystem respiration is generally taken 

as the residual of NEE and GPP. The main advantage of FLUXCOM is that it makes 

direct use of in-situ FLUXNET data; makes it is easy to use different EO data streams 

(e.g. SIF); it is extremely data-adaptive compared to a fixed model structure; and it 

Transport model inter-comparison, use of multiple tracers to extract common errors based 
on direct evaluation of 4D tracer and wind fields with observations (e.g. CoMet field 

campaign). 
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facilitates the derivation of the error covariance parameterizations as it is based on the 

in-situ FLUXNET data. The main disadvantages are the propagation of potential biases 

in the in-situ FLUXNET data, and the difficulty to make it operational and include it in a 

full FFDAS like system.  

• GPP satellite products based on statistical models using solar-induced chlorophyll 

fluorescence (SIF) (Joiner et al., 2018). SIF is  provided by many current and future 

satellites (including  CO2M). It is considered an important constraint for the natural 

fluxes and thus it would help with the attribution of the CO2 emissions/sinks. 

• GPP satellite products based on simplified light use efficiency (LUE) models (Zhang et 

al., 2017). 

 

3.3.2 Simplified models 

Simplified diagnostic models use empirical parameters to represent response of plants to 
atmospheric drivers from NWP models and satellite data, and fixed look-up tables for the 
empirical parameters: 

• The photosynthesis models are based on light-use-efficiency models. In CHE, such 

simplified models include the Vegetation Photosynthesis and Respiration Model (VPRM, 

Mahadevan et al. 2008, see D2.3), SDBM (Knorr and Heimann, 1995), and the A-gs 

model (Jacobs et al, 1996, 2007; Boussetta et al., 2013). 

• The ecosystem respiration component is based on an empirical formulation (Boussetta 

et al., 2013). 

• The advantage of such empirical models is that they have few parameters that can be 

optimized in a CCDAS approach (e.g. Kaminski et al., 2017). Due to their simplicity and 

low cost, they are also suited to run at high resolution (e.g. down to 1km for VPRM 

simulations in CHE, see D2.3) and in NRT (e.g. Agusti-Panareda et al., 2019). Because 

these models are usually diagnostic and they miss complex biochemical processes, 

they cannot be used in climate simulations. 

 

 

3.3.3 Dynamic Global Vegetation Models (DGVMs) 

DGVMs are complex biogeochemical models of terrestrial vegetation that are designed to 
represent the mechanistic processes of enzime kinetics associated with photosynthesis 
(Farquhar et al, 1980) and ecosystem respiration based the representation of carbon pools 
(e.g. JULES, LPJ-GUESS, NCAR-CLM4, ORCHIDEE, OCN, SDVGM, VEGAS, JSBACH, 
BETHY).  

• The advantage of these DGVM is the inclusion of many biogeochemical processes and 

prognostic equation of the evolution of vegetation with time. Therefore, they can be 

used to run simulations over climate timescales (e.g., Sitch et al., 2008). 

• The limitations include the high complexity of the DGVMs (Prentice et al., 2007) which 

include many highly uncertain processes and parameters leading to a large spread 

between models (e.g. Sitch et al., 2008, 2015). 
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3.3.4 Evaluation 

 

 

3.4 Anthropogenic emissions 

Anthropogenic emissions grouped into a single source category provide a clear atmospheric 
signal and offer a simple option for modelling and attribution. However, a single category is no 
longer sufficient when considering the modelling of emissions, co-emission factors and 
uncertainties. Further detail can be gained by dividing emissions into sub-categories. For 
example, the daily temporal distribution of residential heating emissions can be modelled 
separately, using the heating degree day approach (e.g. Guevara et al., 2019a). Emissions 
from certain sectors (e.g. transport) are abundant in co-emitted species, which could provide 
additional information for sector specific attribution. The uncertainty associated with some 
sectors (e.g. energy) is significantly smaller than other sectors (e.g. solid waste incineration). 
For these reasons it is recommended that anthropogenic emissions be grouped into sectors, 
which can either be individually modelled and/or are representative of specific co-emitted 
species and specific uncertainties. The budget of each group must also be sufficiently large to 
generate a detectable modelled atmospheric signal, which is essential for source attribution. 
The following seven categories are recommended, super power stations, typical power 
stations, manufacturing/industry, residential combustion (settlements), aviation, non-aviation 
transport and other (Table 1). 

 

3.4.1 Emission inventories based on Tier 1, Tier 2 and Tier 3 IPCC reporting  

 

Anthropogenic emissions are typically derived with varying degrees of methodological 
complexity following IPCC (2006) guidelines. The estimated emissions per sector and country 
are the product of activity data (e.g. energy statistics) and an estimation of the quantity of 
emissions per unit activity (emission factor). The complexity by which the emissions are 
derived can be grouped into either tier-1 (basic), tier-2 (intermediate/technology-specific) or 
tier-3 (detailed/modelled) methodologies. Similarly, the spatial gridding of the estimated 
emissions can range in quality from tier-1 to tier-3 depending on the appropriateness of the 
spatial proxy being used for each sector, as reported by the EMEP/EEA (2016) guidelines. 
When comparing different emission inventories, studies sometimes show that the total amount 
of CO2 emissions are quite similar but that strong discrepancies appear in their spatial 
distribution (e.g. allocation of CO2 emissions related to residential heating or location of 
industries, Cai et al., 2018).   

At a global scale the state-of-the-art emission inventory (Janssen-Maenhout et al. 2019, 
Choulga et al., 2020) adopts a tier-1/2 methodology; however more detailed information at the 
regional scale permits tier-2/3 methodologies to be adopted by European or national scale 
inventories (CHE D2.3). The methodology adopted by the selected inventory can inform 
uncertainty information. 

Inter-comparison of FLUXCOM, SDBM, VPRM, A-gs (CTESSEL), ORCHIDEE, CASA-
SiB, SiB4, etc with FLUXNET data. The caveat of this evaluation is the representation 
error, which could only be resolved if each model was run at the FLUXNET sites with the 
same observed forcing (see recommendations in section 5). 
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Other tier-3 regional inventories are available for the USA (Vulcan, Gurney et al. (2009), and 
HESTIA, Gurney et al., 2019), Canada, South America and China (e.g. CHRED, Cai et al, 
2018). New tools are being developed to make use of this mosaic of regional inventories by 
combining them with global inventories like EDGAR at the global scale and processing them 
for use in atmospheric transport models (e.g. HEMCO by Keller et al., 2014 and HERMES by 
Guevara et al., 2019a). An example of such a merged mosaic inventory is HTAPv2.2 
(Janssens-Maenhout et al., 2015). However, as inventories may differ in e.g., sector 
definitions, distribution proxies, etc. specific attention is needed to assure consistency across 
the domain.  

 

Table 1 Anthropogenic CO2 emission sectors, their global budget and co-emitters (see Table 1 
from Janssen-Maenhout et al. (2019) for a description of the EDGAR sectors). 

ECMWF 
group 

EDGAR 
sector 

IPCC2006 
activity 

Global budget1 Co-emitters 

Total 
Mton 

Uncertainty 
% 

NOx CO PM2.5 

ENERGY_S ENE 1.A.1.a 
(subset) 

897 -7/+2 ✓ x2  

ENERGY_A ENE 1.A.1.a (rest) 11’672 -7/+7 ✓ X2  
SWD-INC 4.C 137 -40/+40 ✓ ✓ ✓ 

MANUFACTURING IND 1.A.2 7’329 -7/+7 ✓ ✓ ✓ 
IRO 2.C.1, 2.C.2 234 -31/+31    
NFE 2.C.3, 2.C.4, 

2.C.5, 2.C.6, 
2.C.7 

91 -43/+72    

NEU 2.D.1, 2.D.2, 
2.D.4 

25 -58/+127    

NMM 2.A.1, 2.A.2, 
2.A.3, 2.A.4 

1’749 -42/+70    

CHE 2.B.1, 2.B.2, 
2.B.3, 2.B.4, 
2.B.5, 2.B.6, 
2.B.8 

677 -50/+82    

SETTLEMENTS RCO 1.A.4, 1.A.5.a, 
1.A.5.b.i, 
1.A.5.b.ii 

3’323 -11/+11 x3 

 
✓ ✓ 

AVIATION TNR-
Aviation-CRS 

1.A.3.a_CRS 412 -21/+70 ✓ x4 

 
 

 

1 CO2 emission budgets are based on the global emission maps used in the CHE project 
 
2 Power plants show high energy efficiency of the combustion at high temperature. Therefore they emit 
little CO but do they emit NOx. However, the de-NOx – de-SOx abatement can show high efficiencies 
in the range of 96-99%. 
 
3 Residential heating systems can vary, but if locally implemented, a boiler at home is not showing the 
same high temperature combustion as the power plants and so can have lower efficiency combustion 
with emission of CO and less NOx 
 
4  The turbines of airplanes are typically having a higher temperature combustion, with rather NOx 
emissions than CO 

Benchmarking:  

Comparison of EDGAR and TNO inventories and links to UNFCCC over European domain 
and with non-European tier-3 inventories if available. 
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TNR-
Aviation-CDS 

1.A.3.a_CDS 306 -14/+47 ✓ x  

TNR-
Aviation-LTO 

1.A.3.a_LTO 98 -12/+38 ✓ x  

TRANSPORT TRO 1.A.3.b 5’531 -4/+4 ✓ ✓ ✓ 
TNR-Ship 1.A.3.d 819 -35/+49 ✓ ✓ ✓ 
TNR-Other 1.A.3.c, 1.A.3.e 255 -29/+98 ✓ ✓ ✓ 

OTHER REF-TRF 1.A.1.b, 
1.A.1.c, 
1.A.5.b.iii, 
1.B.1.c, 
1.B.2.a.iii.4, 
1.B.2.a.iii.6, 
1.B.2.b.iii.3 

1’918 -32/+144  ✓ ✓ 

 

3.4.2 Emission vertical profiles 

Local sources from power plants and industrial facilities are not emitted at surface but from 
chimney stacks with heights from 100 to 200m above the ground and at high temperatures 
their plumes can rise higher (Brunner et al., 2019). Emission vertical profiles and plume rise 
models are regularly used in regional air quality models (e.g. Bieser et al., 2011; Guevara et 
al., 2014) and they have been shown to have a significant impact on surface CO2 and XCO2 
over Europe (Brunner et al., 2019). The tracer injection heights are usually computed with a 
plume rise model and input stack parameters like stack height, effluent temperature, and 
volume flux. This information is not available for the point sources over the globe and therefore 
some assumptions would be required to use the plume rise model on a global domain. 

Emitting from a point source is not the same as emitting over a model grid cell of 10kmx10km 
as used currently by the IFS. Further testing of the plume rise model needs to be done to 
understand the impact of horizontal and vertical resolution on the most effective vertical 
allocation of the point source.  

 

 

3.4.3 Emission temporal profiles 

Accurate modelling of anthropogenic emissions requires detailed high-resolution temporal 
profiles, which are often unavailable. Offline emissions are typically constant at annual 
(EDGAR v4.3.2, Janssen-Maenhout et al., 2019) or monthly (EDGAR v4.2FT2010) 
timescales. Higher temporal frequency can be included online using prescribed functions for 
weekly and hourly timescales (e.g. biomass burning diurnal cycle implemented in CAMS). 
CHE regional models apply such fixed temporal profiles over Europe (Liu et al., 2017). Global 
models generally do not use such high frequency profiles because it can also introduce high 
uncertainty, as this variability is largely dependent on country and/or climatic zones. Some 
generic profiles have been derived for specific regional inventories (e.g. Nassar et al., 2013, 
Denier van der Gon et al, 2011, Pouliot et al, 2012) and CAMS is now producing global and 
regional gridded temporal profiles for monthly, weekly, daily and hourly timescales for several 
species (e.g. NO2, CO, PM2.5, CO2, CH4) and sectors based on activity data from a range of 
countries. For CO2 gridded temporal profiles for energy, transport and residential heating are 
available. Given the high I/O requirements of using high temporal resolution emissions for the 
different sectors, the current strategy is to use monthly emission datasets and integrate the 
higher resolution temporal profiles (i.e. weekly, daily and hourly variations) in the model. 

Benchmarking: 

 Assessment of impact of sector dependent vertical profiles on atmospheric CO2 variability 
(e.g. Brunner et al. 2019). 
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3.4.4 Modelling fossil fuel emissions (FFDAS approach) 

A fossil fuel data assimilation system offers the potential to constrain the spatial distribution of 
anthropogenic emissions in NRT. National statistics or nightlight observations can be used to 
constrain emissions based on variables such as population density, economic activity or traffic 
activity data. Models such as these (e.g. Rayner et al., 2010) can be used to either inform prior 
emissions for use in atmospheric models or they can be combined with atmospheric models 
and atmospheric observations of CO2 for parameter optimisation, which can provide posterior 
flux information. 

For certain sectors, such as residential heating, temporal profiles can be derived online using 
temperature values from the model atmospheric fields (e.g. Matthias et al., 2018; Guevara et 
al., 2019b). These can be used to update emissions at high temporal frequency. Atmospheric 
variables could also be used to inform energy emissions, through variability in demand. Online 
emissions need to be carefully configured to ensure the global budget in the model is 
conserved, this may require the model to be run in reanalysis mode using historical 
meteorological data. The advantage of this approach is that it provides a very efficient spatial 
and temporal disaggregation of the emission statistics. 

Future developments should focus on a synergy between modelling trace gas emissions and 
urban schemes for numerical weather prediction (NWP). Urban schemes for NWP have 
varying degrees of complexity and can be considered as either slab tiles, single layer canopies 
or multi-layer canopies. The more basic slab (e.g. Best, 2005) and single layer canopy models 
(e.g. Porson et al 2010) could be used on a global scale using only a few parameters, which 
are currently available from providers (e.g. urban fraction). These produce surface 
temperatures, which would inform a residential emissions model. More complex emission 
models which require more variables may be dependent on complex multi-layer urban canopy 
models (e.g. Masson et al., 2000). Efforts have already begun to combine these local scale 

urban schemes with a CO2 emission model (Goret et al., 2019). 

 

3.4.5 Co-emitted species and other tracers for source/sink attribution  

Combustion processes, which are an important anthropogenic source for CO2, co-emit 
chemically reactive species that play an important role in the chemistry of the atmosphere. 
Because of the rapid chemical conversions and removal processes, the spatio-temporal 
gradients of these species are often more pronounced than the gradients of CO2, and they are 
much less influenced by biogenic activity. These two aspects make the reactive species good 
markers for anthropogenic emissions from different sectors (listed in Table 1). Important 
examples of the co-emitted species are nitrogen oxide (NO), nitrogen dioxide (NO2), carbon 
monoxide (CO) and sulphur dioxide (SO2). Most of these species are observed with the air 
quality in-situ network at the surface and with satellite instruments. In particular, NO2 can be 
monitored at a high spatial (e.g. TROPOMI, Eskes et al., 2019) and temporal resolution (e.g. 

Benchmarking:  

Assessment of impact of residential heating profiles in CHE nature run on atmospheric 
CO2 variability. 

Benchmarking:  

Assessment of impact of fixed emission temporal profiles on atmospheric CO2 variability 

(e.g. Liu et al. 2017). 
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Sentinel 4) with current or planned satellite missions. Another approach for the fossil fuel 
attribution is to use the radioactive isotope of carbon (14CO2) from in situ observations (CHE 
D4.1) which is depleted in fossil fuels, or Atmospheric Potential Oxygen (APO) which is based 
on the variation of oxygen to nitrogen ratio associated with fossil fuel combustion (see CHE 
D4.1 and CHE D4.3 for further details). 

 

• CO and NOx are co-emitted by combustion processes (e.g. energy production, 

transport, residential heating) and therefore can provide information on attribution of 

specific sectors (see Table 1, CHE D4.3). We require prior information of co-emitted 

species in terms of emissions, atmospheric sink associated with chemistry, 

atmospheric initial conditions and/or emission factors (depending on the definition of 

the control vector in data assimilation). Emission factors depend on sector and fuel 

type (for CO2) and on technology (for NOx, CO, PM2.5) and differ amongst regions 

and even within one country. Therefore, they are highly uncertain. The key question 

is whether regional spatial averages of sectoral emission factors are well 

characterized or whether they are chaotic (i.e. not stable) like emitter-to-emitter 

variations. The activity data show large temporal and spatial variability and therefore 

they can become highly uncertain. The initial and boundary conditions are available 

from the CAMS re-analysis (Inness et al., 2019). 

• Radiocarbon is potentially a very useful marker to trace fossil fuel emissions. 

However, it is a complex tracer to model (see CHE D4.3) with limited availability of 

observations (CHE D5.1). This requires representation of sources (cosmogenic and 

nuclear power), as well as the adaptation of the atmospheric CO2 and anthropogenic 

emissions (fossil fuel and bio fuels), ocean fluxes, biomass burning and biogenic CO2 

flux model in order to represent the isotope fractionation associated with all the 

processes (Wang, 2016; Wang et al., 2018). Initial conditions and boundary 

conditions for regional models are also required. In CHE they have been provided by 

the LMDZ simulation of Wang (2016). 

• Atmospheric Potential Oxygen (APO) is also a complex tracer to model with limited 

availability of observations (see CHE D4.3), requiring information on: O2 consumption 

flux from anthropogenic emissions (fossil fuel, biofuel); the O2:CO2 ratio of terrestrial 

biospheric exchange (per biome and soil type);  gridded ocean CO2, O2 and N2 

fluxes; biomass burning O2/CO2 ratios (based on CO:CO2 ratios); and photochemical 

CO and CH4 oxidation from reaction with OH (associated with net loss of 

atmospheric O2). Finally, atmospheric initial and boundary conditions are also 

required as input. In CHE, these have been obtained from the Jena Carboscope 

inversions (Rödenbeck et al, 2013). 

• Carbonyl Sulfide (COS) is a tracer that can be used to constrain gross primary 

productivity associated with photosynthesis by vegetation (Launois et al., 2015). The 

observations available are described in D5.1. The model requirements comprise: 

atmospheric sink, its ocean emissions, its soil fluxes, its anthropogenic emissions, its 

biomass burning emissions and the leaf relative uptake ratio of COS to CO2 fluxes. 
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3.4.6 Evaluation 

 

 

3.5 Biomass burning emissions 

Fire is an essential component of the Earth system contributing significant amounts of 
greenhouse gases, trace gases and particulate matter to the atmosphere. Satellite 
measurements of global fires provide information on the location and timing of active fires and 
can be used to estimate emissions using observations of either the burnt area (BA) or fire 
radiative power (FRP). In both cases these observations are used to estimate the dry matter 
consumed by fire which is used in the emission estimation based on vegetation type and 
emission factors derived from laboratory and field studies. Currently available datasets of fire 
emissions use both burned area (e.g., Global Fire Emissions Database, GFED) and FRP (e.g., 
Global Fire Assimilation System, GFAS; Fire INventory from NCAR, FINN). Total estimated 
emissions are generally consistent between the two approaches and the choice of which 
method to use depends on the application: the BA approach provides information on extent of 
burning in addition to the emissions but is not available in NRT; the FRP approach is available 
in NRT and is more suitable for operational applications. Improvements in estimating global 
fire emissions are anticipated in the near future through the use of real-time satellite 
observations from geostationary and LEO orbits, improvements in vegetation/land cover 
maps, and improved emission factors from laboratory and field studies. 

3.6 Ocean fluxes 

Ocean CO2 fluxes can also be estimated using data-fusion methods with pCO2-based 
products (e.g. Takahashi et al., 2009) or global ocean biogeochemistry models (GOBMs): 

• The GOBM represent the physical, biological and chemical processes that control the 

CO2 concentration in the ocean (e.g. CCSM-BEC, Doney et al. (2009); MICOM-

HAMOCC, Schwinger et al., 2016; MITgcm-RecoM2, Hauck et al., 2016; MPIOM-

HAMOCC, Mauritsen et al., 2019; NEMO-PISCES (CNRM), Berthet et al., 2019; NEMO-

PISCES (IPSL), Aumont and Bopp, 2006; NEMO-PlankTOM5, Buitenhuis et al., 2010). 

Like the DGVMs they require inputs for the atmospheric forcing (e.g. from NWP re-

analysis). They are complex costly models, with prognostic skill to run in climate 

simulations. 

• Data-based products are designed to exploit all the available pCO2 observations over the 

ocean from the SOCAT database using either neural networks (e.g. Landschützer et 

al.,2015) or simple parameterizations of the ocean mixed layer (e.g. Rödenbeck et al., 

2014). 

A comparison between the annual ocean CO2 sink from GOBM and pCO2 flux products shows 
there is consistency in the underlying variability (Le Quéré et al., 2018, Friedlingstein et al., 
2019). 

 

• Inter-comparison of emission data sets (e.g. EDGAR, TNO) 

• Input of atmospheric modeling on the sensitivity of the used spatial distribution, 

the temporal profiles 

• Consistency between emission fields of CO2 and of co-emitted species 

• Check on the sub-regional detailed inventory and the same region of the global 

inventory – the total is constrained at country level.  

• Explore information in additional tracers like C14, APO. 
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3.7 Atmospheric chemistry 

Modelling combustion short-lived species (CO and NOx) to infer CO2 sources requires the 
simulation of the chemical conversions, removal processes and the emissions in the 
atmosphere. Of particular importance are the fast chemical conversions between the emitted 
but very-short lived NO and the longer lived but well-observed NO2 in the presence of other 
chemical species such as ozone and OH. Chemical schemes comprising of 50-120 species 
have been integrated in the IFS as part of the GEMS, MACC and CAMS projects (Flemming 
et al, 2015, Huijnen, et al. 2019). The IFS in CAMS configuration is used operationally to 
forecast atmospheric composition and to assimilate satellite retrievals of NO2, CO, ozone, SO2 
and Aerosol Optical Depth (Inness et al. 2019). 

But, the computational cost of the chemical schemes is considerable, which may require the 
development of computationally affordable but still adequate versions of the chemistry scheme 
for the application in CHE. The development of simplified schemes is already a growing 
research focus in CAMS because affordable schemes are intended to be used to better 
represent atmospheric chemistry in the tangent-linear and adjoint formulation of the IFS 
applied in the 4DVAR data assimilation approach. For example, the development of a 
surrogate model for chemistry using machine learning algorithms will be developed as part of 
a NASA project run by University of Colorado in collaboration with ECMWF.  

4 Progress in integration and recent developments  

The integration of the different model and prior components of the CO2MVS depicted in 
Figure 1 has been tested in the context of various CHE nature run simulations of CO2 and 
co-emitters (CHE D2.1, D2.2, D2.4, D2.6, D2.8). This integration relies greatly on the 
consistent mapping of the land surface cover which provides inputs to the inventories, the 
numerical weather prediction model and the vegetation model (as indicated by the arrows in 
Figure 1). These and other aspects that play an important role in the realism of the 
simulations are presented here to illustrate the progress and challenges that will need to be 
addressed in the implementation of the CO2MVS during the follow-on project CoCO2.  

The coupling of the different components in the framework of Earth System Modelling 
depicted in Figure 2 is still ongoing.  The CO2MVS will benefit from the integration with NWP 
in order to improve the accuracy of tracer transport. Section 4.1 presents recent 
developments in the tracer advection scheme of the Integrated Forecasting System at 
ECMWF on which the CO2M observation operator of the global CO2 MVS will be based. 
Highlights of the multi-scale and multi-species simulations focusing on plumes from emission 
hotspots are provided in section 4.2, emphasizing the benefits and challenges of using co-
emitted species, as well as temporal and vertical variability of emissions. Section 4.3 
presents the new developments of the urban model in the IFS which will allow to compute 
residential heating emissions online with high temporal and spatial resolution. The 
importance of the biogenic fluxes in explaining the atmospheric CO2 signal and the mapping 
activities affecting the biogenic fluxes are presented in section 4.4. The integration of specific 
emission sectors such as residential heating and biogenic fluxes in the ESM will improve the 
consistency between emissions and sinks of CO2 and atmospheric transport in the 
CO2MVS. This will result in a better representation of the rectifier effect (Denning et al., 
1999, Liu et al., 2017) and therefore it will make the modelling more realistic.  

 

4.1 Numerical schemes and parameterisation of atmospheric tracer transport  

 

The atmospheric inversion system in the MVS relies on the accurate representation of 
atmospheric tracer transport as the operator that translates the information of observed 
atmospheric concentrations to natural surface fluxes and anthropogenic emissions. In 
particular,  numerical errors in the transport model, including tracer and total air mass 
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conservation (Agusti-Panareda et al., 2017), numerical diffusion (Eastham and Jacob, 2017) 
and parameterization of sub-grid scale processes (Yu et al., 2018) affect all tracer transport 
models to various  degrees, potentially leading to regional biases that are difficult to diagnose 
and will impair the reliability of the inversion results. Therefore, the evaluation of numerical 
and physical parameterisation schemes in transport models remain a priority. For example, 
the IFS tracer transport is known to be very efficient and robust, but suffers from mass 
conservation errors which are addressed in the CAMS atmospheric composition analysis and 
forecasting system with a mass fixer (Diamantakis and Agusti-Panareda et al., 2017). An 
alternative interpolation method for the standard semi-Lagrangian advection scheme 
(COMAD, Malardel et al., 2015) that introduces the concept of cell-averaging and improves its 
conservation properties will be tested and further adapted for CO2 and other tracers in the IFS. 
Figure 3 shows some preliminary results of the COMAD advection in the IFS which leads to  
a smaller XCO2 correction by the mass fixer than the standard semi-Lagrangian advection. 

 

  

Figure 3 Accumulated XCO2 mass fixer correction [ppm] for the new COMAD semi-Lagrangian 
advection scheme (left) compared to the standard scheme used operationally in  CAMS CO2 
analysis and forecasts and in the CHE nature runs (right) after one month of simulation in 
January 2015. 

 

Atmospheric boundary layer mixing is another aspect of transport models that urgently 
requires further investigation. Most inversion systems are only able to assimilate observations 
near the surface during the afternoon when well-mixed conditions are prevalent, because of 
the large uncertainty of turbulent mixing under stable conditions. Using tracers like radon 
(Williams et al., 2011) which have a distinct concentration in the boundary layer and free 
troposphere can help to diagnose transport errors near the surface (Chambers et al., 2015). 
The correlation between radon concentrations measured at the ICOS sites and the boundary 
layer height (Figure 4) will be further exploited to investigate the transport model error in the 

boundary layer in the CoCO2 nature runs. 
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Figure 4 IFS simulation of hourly radon (222Rn) concentrations [Bq/m3] and atmospheric 
Boundary Layer Height (BLH) [m] at Trainou (France) (Schmidt et al., 2014) ICOS-Atmosphere 
Thematic Centre station for the period from 1 December 2019 to 28 February 2020. Radon 
observations [Bq/m3] are shown as black circles and simulated values are shown with coloured 
circles based on two different emission datasets:  a climatology from Karstens et al. 2015 (red 
circles) and zonally averaged emissions used in the CAMS operational forecast (cyan circles). 

 

4.2 Plume simulations with co-emitted species 

 

Power plants are an important source of CO2. In Europe, approximately 50% of CO2 is emitted 
from power plants and other point sources through stacks (Brunner et al., 2019). As illustrated 
in Figure 5 showing simulated column mean dry air mole fractions XCO2 over Germany on 2 
November 2015, these point sources generate a large number of plumes with pronounced 
local enhancements in XCO2 that can potentially be imaged by the CO2M mission. An 
important question is thus, how well such plumes can be simulated by atmospheric transport 

models and what resolution is required to properly represent their main characteristics. 
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Figure 5 Column-averaged dry air mole fractions XCO2 on 2 Nov 2015 over a domain covering 
parts of Germany, Poland and the Czech Republic as simulated by COSMO-GHG at 1 km 

horizontal resolution. The 15 largest point sources in the domain are labelled. Weaker point 
sources are marked by diamonds. 

 

 

 

In order to investigate the impact of model resolution, simulations from different models 

operating at different resolutions were compared: 

- CHE Tier 1 global nature run, IFS model, 9 km horizontal resolution, year 2015 

- CHE European nature run, COSMO-GHG model, 5 km resolution, year 2015 

- CHE Berlin nature run, COSMO-GHG model, 1 km resolution, year 2015 

- COSMO-GHG simulations of selected plumes of power plants Belchatow (Poland) 

and Jänschwalde (Germany), 1 km resolution, few days in 2018 

- EULAG LES simulations of Belchatow plumes, 200 m resolution, days in 2018 

 

Figure 6 presents an example of the representation of power plant plumes in eastern Germany 
in different CHE nature runs. The figure presents a snapshot of XCO2 on 9 March 2015 at 
09:00 UTC. In the COSMO-GHG simulation at 1 km resolution, the three plumes are very 
pronounced with amplitudes of up to 4 ppm above background. They are still easily visible in 
the COSMO-GHG simulation at 5 km resolution but the individual plumes are more dispersed 
and start to overlap. In the global Tier-1 simulation at 9 km resolution, the individual plumes 
are hard to distinguish, but rather a single broad plume with a maximum amplitude of about 1 
ppm emanates from the area of the power plants. The coarser resolution thus leads to a strong 
dilution, which will make it more difficult to identify the plumes against variations in the 
background and to discriminate individual sources, if they are located close to each other, 

which is quite a typical situation for power plants (see Fig. 5). 

Figure 6 also illustrates the importance of the underlying emission inventory and of the vertical 
placement of the emissions from power plants. While plume rise was explicitly accounted for 
in the COSMO-GHG simulations, CO2 was emitted at the surface in the CHE Tier-1 simulation. 
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Because of strong vertical wind shear on this day, the plume was therefore advected into a 
different direction in the IFS model. When CO2 was also emitted at the surface in the COSMO-
GHG model, the plume was transported in the same direction as in the IFS model (lower right 
panel), demonstrating that these differences were not due to different meteorology but due to 
the vertical placement of the emissions. 

 

 

Figure 6 Column-averaged dry air mole fractions XCO2 on 9 Mar 2015 09:00 UTC over a domain 
in eastern Germany with three coal-fired power plants (Jänschwalde, Schwarze Pumpe,  
Boxberg) simulated by different models at different resolutions. Left: COSMO-GHG at 1 km and 
5 km horizontal resolution with emissions from TNO inventory and accounting for vertical plume 
rise. Right: IFS Tier-1 simulation at 9 km resolution and COSMO-GHG simulation at 5 km 
resolution using the EDGAR inventory and emitting CO2 only at the surface. Red arrows indicate 
the direction of propagation of the plume. 

 

 

Even higher resolution simulations (at 200 m horizontal grid spacing) were conducted with the 
Large Eddy Simulation (LES) model EULAG, in order to provide a reference for coarser 
models. Figure 7 shows the XCO2 plume of the power plant Belchatow, the largest ignite power 
plant in Europe, simulated by EULAG for 7 June 2018, 13:00 UTC. The individual panels show 
the simulation at the original and downgraded to lower resolutions. The simulation was driven 
at the lateral boundaries by meteorological output of a 1 km simulation of the COSMO-GHG 
model in order to provide a realistic larger scale forcing. The meteorological situation was 
sunny and convective leading to a highly turbulent plume strongly deviating from a classical 
Gaussian shape as seen in the figure. At lower resolution, the plume becomes more Gaussian, 
but pockets of higher and lower concentrations caused by the turbulence are still visible at the 
resolution of CO2M (~2 km) and even at 4.2 km resolution. 
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Figure 7 Column-averaged dry air mole fractions XCO2 on 7 Jun 2018 13:00 UTC as simulated 
by the EULAG LES model. The panels show the simulation at the original resolution (top left) 
and downgraded (averaged) to lower resolutions of 1 km, 2.2 km and 4.2 km. 

 

In order to assess the realism of the simulations, the plumes simulated by EULAG and the 
COSMO-GHG (1 km) model were compared with aircraft in situ and remote sensing 
observations from the CoMet measurement campaign collected on 7 Jun 2018 (Fiehn et al., 
2020). Measurements were collected from three aircraft transecting or overflying the plume 
multiple times at different distances from the power plant. An example of the comparison with 
total column XCO2 as measured by the MAMAP spectrometer of the University of Bremen is 
presented in Figure 8. The figure suggests that the EULAG model realistically simulates the 
amplitude and fine-scale structure of the plume, while it is smoothed out too strongly in the 
COSMO-GHG model. Overall, the comparisons with the observations for this case and for 
another case with observations of the Jänschwalde plume, lead to the following conclusions: 

- The models quite realistically represent the fine-scale structure and turbulent nature 

of the plumes 

- Due to the stochastic nature of turbulence, it is impossible for a model to exactly 

capture the plume structure at a given instant in time. Therefore, models need to be 

assessed for their ability to represent statistical properties of a plume such as mean 

plume width and amplitude as a function of distance or frequency distributions of the 

CO2 enhancements. 

- The Belchatow and Jänschwalde plumes were observed under different 

meteorological conditions that produced very different plumes:  A highly complex, 

turbulent plume in the case of Belchatow, a smooth Gaussian-shaped plume in case 

of Jänschwalde. Less turbulent situations are easier to simulate. 

- The COSMO-GHG model tends to overestimate plume dispersion: With increasing 

distance from the source, simulated plume widths tend to be larger than observed 
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- Accounting for plume rise is highly relevant: The in-situ measurements suggest that 

the plumes extended to about 1600 m (Belchatow) and 1000 m (Jänschwalde) 

already at short distances (~10 km) from the source. The observed plumes could 

only be reproduced realistically when accounting for plume rise. 

 

 

 

Figure 8 Comparison of simulated column-averaged dry air mole fractions XCO2 of the 
Belchatow plume on 7 Jun 2018 with measurements of the airborne MAMAP spectrometer of 
the University of Bremen. Top: EULAG LES model. Bottom: COSMO-GHG model. Overpasses 

over the plume are numbered 1-7 corresponding to increasing distances from the source 
between 2 km (transect 1) and 23.8 km (transect 7). 

 

The value of additional satellite observations of trace gases like NO2 and CO emitted by 
combustion processes for the quantification of CO2 emissions from cities and power plants 
was studied in the ESA project SMARTCARB. In particular NO2 was found to be highly 
beneficial for several reasons: (i) NO2 has low background concentrations due to its short 
lifetime, so that plumes can easily be discriminated against variations in the background. (ii) 
Biospheric sources of NOx are low compared to anthropogenic emissions. (iii) NO2 can be 
measured from satellites with comparatively high precision, as demonstrated by recent 

satellite missions such as TROPOMI.  

As shown in Figure 9, NO2 plumes can therefore be more easily detected in satellite 
observations than CO2 plumes. The figure is based on synthetic satellite observations of CO2 
and NO2 generated from a 1 km x 1 km resolution COSMO-GHG simulation and applying 
realistic instrument noise levels. It shows the plume of the city of Berlin on 21 April 2015. The 
true CO2 and NO2 plumes as determined from a tracer representing only emissions of Berlin 
are outlined by black solid and dashed lines, respectively. A plume detection algorithm was 
then applied to the noise images to identify pixels with values significantly above background 
(Kuhlmann et al. 2019). The figure shows that a much larger proportion of the plume can be 
detected from the NO2 observations compared to CO2. As shown in Kuhlmann et al. (2020), 
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additional NO2 observations allow quantifying CO2 emissions from a larger number of plumes 
and with much better accuracy. NO2 was simulated here in a highly simplified way with a 
constant decay time of 4 hours. Full chemistry simulations are necessary to capture the 
complex photochemical processing of NO2 in the plumes. It should be investigated in a future 
project how well a simplified NO2 tracer agrees with a full chemistry tracer. 

 

 

Figure 9  Example of plume detection in (simulated) CO2 and NO2 satellite observations on 21 
April 2015. Significant pixels detected by a plume detection algorithm are highlighted as black 

crosses. The outlines of the true CO2 and NO2 plumes based on Berlin emission tracers are 
overlaid as solid and dashed lines, respectively. (a) Low-noise CO2 instrument. (b) high-noise 
CO2 instrument. (c) High-noise NO2 instrument on the CO2M satellite. (d) NO2 instrument on 

Sentinel-5 (from Kuhlmann et al., 2019). 

 

4.3 Urban model 

 

New developments of a simple urban model in the Integrated Forecasting System at ECMWF 
will result in a more accurate representation of the energy, water and carbon fluxes over urban 
areas. The introduction of an urban tile within the IFS has begun with initial testing using the 
single column model (SCM) and the global offline surface model (GOSM). The advantages of 
the new tile are expected to be two-fold, firstly to provide improved NWP scores and secondly 
to introduce an online residential emissions model. The developments are expected to follow 
a similar path to the existing online vegetation model, which provides both NWP relevant 
information and online biogenic CO2 fluxes. The CO2 residential emissions model will be 
largely based on Guevera et al. (2013). 

The aim is to implement a single layer urban model within the IFS, which uses mapped 
parameters to derive surface energy and hydrology fluxes. The model considers radiation 
using an infinite canyon assumption, accounting for shadowing, which is dependent on urban 
parameters and the solar zenith angle. The surface roughness is generated using building 
properties and information on canyon geometry, removing any concept of canyon orientation. 
Thermal and hydrological properties are also defined by several urban parameters, accounting 
for not only land-atmosphere exchange but also sub-surface exchanges of both heat and 
water. The scheme consists of both time varying (e.g. albedo based on solar zenith angle) 
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and constant variables (e.g thermal heat capacity of a building). It is optimised using a Gauss-
Newton non-linear least-square approximation to derive parameter values in the SCM, and 
results are shown in Figure 10, taken from an upcoming study (McNorton et al. in prep). Early 
results show improved model forecast over urban areas with future work aimed at 
implementing the scheme operationally. The urban scheme is currently being used in a global 
surface-only version of the IFS, with results showing the expected enhancement in night-time 
2m temperature (Figure 11). 

 

 

Figure 10 Hourly observed 2m temperature taken from 8 urban sites for January 2012 (black 
circles). Also shown are IFS single column model results using both a control (red) and the 
urban scheme (blue). Values indicate the RMSE values for comparison of model and 
observations. 
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Figure 11 The difference in modelled average 2m temperature over Southern UK between the 
urban scheme and the control for 00 UTC during January 2019. Conurbations larger than 1,000 
km2 (solid), 500 km2 (dashed) and 100 km2 (dotted) are denoted with boxes. 

Sentinel-5 (from Kuhlmann et al., 2019). 

 

4.4 Biogenic CO2 fluxes 

 

Biogenic fluxes of CO2 are very important to explain the variability of atmospheric CO2 and 
therefore they are crucial to interpret the observations of near surface CO2 and column-
averaged CO2 (XCO2) in the MVS. In the CHE project the evaluation of the tier 2 global nature 
run has shown that large part of the biases in the seasonal cycle of atmospheric CO2 
simulations (Figure 12, upper panels) can be explained by errors in the biogenic fluxes (Figure 
12, lower panels and Figure 13, left panels). Overall, the low CO2 values in the summer are 
not low enough as shown by the positive bias at the Total Carbon Column Observing Network 
(TCCON) sites from June to August during which the atmospheric enhancement associated 
with biogenic fluxes is strongest. This is consistent with the large underestimation of the 
modelled Net Ecosystem Exchange (NEE) at the ICOS-Ecosystem Thematic Centre (ETC) 
sites of around 4 μmol m-2s-1 on average with respect to eddy covariance observations and the 
CHE FLUXCOM product (based on Jung et al., 2020). This is attributed to a very large 
underestimation of Gross Primary Production (GPP) in the model of around 4 μmol m-2s-1 on 

average, but also in ecosystem respiration (Reco) (2 μmol m-2s-1) at weekly to monthly 
timescales. These errors in GPP are consistent with systematic errors in the diurnal cycle 
during the summer period with an amplitude underestimation of around 5 μmol m-2s-1 at the 

ICOS-ETC sites. 
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Figure 12 Upper panels: Monthly mean column-averaged CO2 dry molar fraction (XCO2) [ppm] 
from TCCON observation (TCCON Team, 2017)  (left) and CHE tier 2 nature run (middle) and the 
monthly bias of the CHE tier 2 nature run with respect to observations (right). Grey colour 
indicates no observations are available. Lower panels: Monthly mean XCO2 accumulated 
enhancement [ppm] associated with anthropogenic emissions (left) and land biogenic fluxes 
(right) throughout the CHE tier2 nature run at the same TCCON sites.  

 The errors in the models used to estimate the prior biogenic fluxes are associated with a wide 
range of error sources. Important sources of uncertainty are related to the land use and land 
use change errors as well as the LAI scaling method that allows its disaggregation into high 
and low vegetation components (Boussetta et al., 2013). This is illustrated in Figure 14 which 
shows preliminary sensitivity results from experiments performed with the IFS. The 
experiments compare the use of the new land cover data from ESA-CCI provided by C3S 
(http://datastore.copernicus-climate.eu/documents/satellite-land-cover/D3.3.12-
v1.2_PUGS_ICDR_LC_v2.1.x_PRODUCTS_v1.2.pdf ) together with the new LAI scaling 
method to a control setting based on the operational LAI data (MODIS collection 5 climatology) 
and the GLCC land cover data (Loveland et al., 2000; http://edcdaac.usgs.gov/glcc/glcc.html). 
Overall, the results show a large impact of the land cover and LAI on NEE at regional scale. 
The NEE differences are around 3 μmol m-2s-1 in magnitude, with positive and negative 
differences over various regions. These NEE changes are associated with changes in both 
GPP and RESP. More work is under way to calibrate model parameters associated with the 
land surface model using the new land cover and LAI data. However, these preliminary results 
indicate that these changes would have a significant impact on regional CO2 budgets which 
will lead to changes in atmospheric CO2 gradients.  

 

http://datastore.copernicus-climate.eu/documents/satellite-land-cover/D3.3.12-v1.2_PUGS_ICDR_LC_v2.1.x_PRODUCTS_v1.2.pdf
http://datastore.copernicus-climate.eu/documents/satellite-land-cover/D3.3.12-v1.2_PUGS_ICDR_LC_v2.1.x_PRODUCTS_v1.2.pdf
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The ultimate goal of the evaluation of the biogenic flux prior is to understand the source of 
biogenic flux errors so that we can improve the underlying biogenic model, and to quantify the 
uncertainty of prior fluxes for future atmospheric inversions based on the IFS. These two 

aspects will be addressed in the CHE follow on project (CoCO2). 

  

  

  

Figure 13 Mean seasonal cycle of NEE (top), GPP (middle) and RESP (bottom) [μmol m2 s-1] at 
25 ICOS-ETC Eddy Covariance (EC) sites in 2015  from ICOS Research Infrastructure (2019).  
Observations are shown in black; the IFS modelled fluxes in cyan and the bias corrected fluxes 
used in the CHE T2 nature run in blue; the CAMS inversion product (total flux – anthropogenic 
emissions) based on surface observations is shown in orange; and the CHE FLUXCOM product 
(based on Jung et al., 2020) in green. the The shading depicts the standard deviation across the 
25 sites. Right panels: Median of the diurnal cycle of NEE (left), GPP (middle) and RESP (right) 
[μmol m2 s-1] at the 25 ICOS-ETC EC sites in July 2015. 
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Figure 14 Monthly mean NEE in July 2017 [μmol m-2s-1] from the control experiment using 
current IFS operational land cover from GLCC and MODIS LAI climatology (top left) and from 
the ESA-CCI with LAI climatology (lower left). The difference between the two experiments is 
shown on the top right panel with the relative differences [%] shown in the lower right panel. 

 

5 Recommendations for operational CHE prototype  

Three immediate priorities were identified in the CHE WP2-WP5 workshop (organized by 
EMPA in May 2020) to further develop critical modelling and prior information aspects of the 

operational CO2MVS prototype: 

1. Improve accuracy of tracer transport schemes with emphasis on mass conservation 

and numerical diffusion/dispersion of tracer advection, and the representation of 

boundary layer mixing, particularly under stable conditions. 

2. Improve spatial and temporal representation of plumes from hotspots with emphasis 

on vertical and temporal variability of emissions and use of co-emitted species. 

3. Improve spatial and temporal representation of biogenic flux priors that largely control 

the variability of the background CO2 concentrations. 

 

These topics will be addressed in the CoCO2 project. Detailed recommendations on the 
different aspects related to these three main priorities are provided in Table 2.  
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 Table 2: Implementation priorities linked to the domain (global, regional,local) and stream for 
application in the prototype: Near Real Time (NRT), or re-analysis (RA). An estimate of the 

effort required is given in person months. 

Topic 
identifier 

Component Domain Stream Recommendation Estimated 
effort  
(Person 
Months) 

IM-TRA-1 Transport global 
regional 

NRT 
RA 

Test near mass-
conserving 
advection scheme in 
online models (e.g. 
COMAD semi-
Lagrangian in the 
IFS) 

6 months 

IM-TRA-2 Transport global 
regional  
local 

NRT 
RA 

Evaluation of 
turbulent mixing and 
convective transport 
using Radon and 
other tracers 
(vertical gradients) 

9 months 

IM-TRA-3 Transport global 
regional 

NRT 
RA 

Inter-comparison of 
global, regional 
and local models to 
evaluate local 
transport by 
plumes 

12 months 

IM-AEM-1 Anthropogenic 
emissions 

Local 
 (Point 
Sources) 

RA Characterisation of 
emission source 
with all parameters 
and have plume 
model for each or 
for a group of them 
(evaluate how to 
group these into 
"clumps") 

12 to 36 
months 

IM-AEM-2 Anthropogenic 
emissions 

Global NRT 
RA 

Introduce online 
fixed spatio-
temporal profiles for 
different sectors at 
weekly, daily, hourly 
scales (e.g. 
Guevara et al. 
2019ab, Nassar et 
al. 2013). 

12 months 

IM-AEM-3 Anthropogenic 
emissions 

Global 
Regional 

NRT  
RA 

Vertical profiles of 
emissions (e.g. 
Brunner et al. 2019) 
(emission heights + 
temperature-
dependent injection 
velocities) 
implemented and 
tested in a stepwise 

12 months 



C02 HUMAN EMISSIONS 2020  

 

D5.4 Final report on service elements for CO2 emission and transport model integration  36 

fashion with 
incremental 
complexity 

IM-AEM-4 Anthropogenic 
emissions 

Global 
Regional 

NRT Modelled temporal 
profiles with meteo 
predictors (e.g. 
residential heating) 
to support FFDAS 
approach. 

12 months 

IM-BIO-1 Biogenic 
fluxes 

Global 
Regional 
Local 

RA Extensive site-level 
cross-validation 
model 
intercomparison 
excercise where 
models are run at 
site-level with site-
level measured 
meteo (and high res 
satellite data cutouts 
if needed). This 
would be really 
helpful and insightful 
to judge on the 
qualities and gaps 
between GPP and 
NEE models of 
different kind and 
complexity. It would 
also open doors for 
estimating the 
spatial-temporal 
errors and error 
covariance 
parameterisations 
for the different 
models.  

24 months 

IM-BIO-2 Biogenic 
fluxes 

Global 
Regional 

NRT Test improved high 
resolution mapping 
of land use in 
models: 
classification, cover, 
including vegetation 
mapping (CGLS, 
Buchhorn et 
al.,2017; ESA-CCI, 
2017; ECOCLIMAP 
Champeaux et al, 
2005; GLCC, 
Loveland et al., 
2000; urban 
settlement dataset 
from JRC, Pesaresi 
et all, 2016) 

12 months 
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IM-BIO-3 Biogenic 
fluxes 

Global 
Regional 

RA Improve simplified 
model to use 
information on SIF  

24 months 

IM-BIO-4 Biogenic 
fluxes 

Global 
Regional 

RA Test impact of land 
use change with 
simplified, data-
driven and DGVM 

36 months 

IM-BIO-5 Biogenic 
fluxes 

Global 
Regional 

RA Inter-comparison of 
DGVM, simplified 
and data-fusion 
models (multi-model 
ensemble to 
characterise 
uncertainty) 

12 to 24 
months 

IM-CHM-1 Chemistry Global 
Regional 

NRT 
RA 

Develop 
computationally 
affordable chemistry 
for co-emitted 
tracers (NO2, CO, 
PM2.5, NMVOC) 

36 months 

 

 

6 Research priorities  

Longer-term research priorities with a 5 to 10-year timeline (listed in Table 3) will feed into the 
development of the operational CO2MVS. These will require further research investment to 
reach the expected maturity for operational implementation in the CO2MVS. 

 

Table 3: Research priorities linked to the domain (global, regional,local) and stream for 
application in the prototype: Near Real Time (NRT), or re-analysis (RA). An estimate of the 
effort required is given in person months. 

Topic 
identifier 

Component Domain Stream Recommendation Estimated 
effort  
(Person 
Months) 

RS-TRA-1 Transport Global 
Regional 

NRT 
RA 

Test new transport 
schemes developed 
in NWP, e.g. 
MPDATA advection 
in FVM IFS 
(Kühnline et al, 
2019)  

36 months 

R-TRA-2 Transport Global 
Regional 
Local 

NRT 
RA 

Integrate plume rise 
model in emission 
hotspots (Guevara 
et al, 2014, Brunner 
et al., 2019) 

24 months 

RS-TRA-3 Transport Regional 
Local 

NRT 
RA 

Evaluate PBL wind 
profiles crucial for 
plume modelling 
(Sandu et al., 2013)  

12 months 
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RS-AEM-1 Anthropogenic 
emissions 

Global 
Regional 
Local 

NRT 
RA 

Extend FFDAS 
approach using all 
available human 
activity proxies. 

24 months 

RS-AEM-2 Anthropogenic 
emissions 

Global RA Merge mosaic of 
regional inventories 
(Tier 2,3) with global 
inventory (Tier1, 
Tier2). 

12 months 

RS-BIO-1 Biogenic 
fluxes 

Global 
Regional 

NRT 
RA 

Use SIF and COS to 
constrain biogenic 
fluxes 

24 to 36 
months 

RS-BIO-2 Biogenic 
fluxes 

Global 
Regional 
 

RA Introduce crop 
modelling and 
relevant land 
management 
information (crop 
rotation/harvesting, 
grazing, etc.) 

24 to 36 
months 

RS-TRC-1 Other tracers Regional  Implementation of 
APO and 
radiocarbon in 
forward/inverse 
model. 

36 months 

 

 

7 Conclusion 

This report presents the options for a high-resolution modelling and prior flux estimation 
capability in the context of the CHE CO2 prototype based on: multi-scale (global, regional and 
local), multi-species (CO2 and co-emitted species) and multi-stream (NRT and re-analysis) 
models and products. The outcome of the CHE WP2-WP5 workshop organized by EMPA in 
May 2020 provided guidance on the refinement of the priorities regarding the operational MVS 

prototype into three major areas: 

• Evaluation of tracer transport with the inter-comparison of global, regional and local 

models, addressed in CHE (CHE D2.1, CHE D2.2, D2.4, D2.6) with various nature 

runs. These scales underlay the monitoring of CO2 emissions at global, national and 

regional scales (Pinty et al, 2017). Undetected biases in the transport will lead to 

biases in the estimated emissions. Therefore, the continuous evaluation and 

improvement of the transport accuracy on those scales (from global to plume) is 

crucial. 

• Evaluation of requirements for plume representation in models with case studies of 

plumes from hotspots using different transport models (e.g. CHE D2.7, D2.8, 

SMARTCARB).  The small scales required to resolve the plume transport and the 

strong dependency of the plume evolution on the representation of spatial/temporal 

variability of emissions, the background CO2 and the meteorological information are 

challenges that need to be addressed at the model level in the context of the 

monitoring of emissions from hotspots. These challenges highlight the need for high 

resolution, human activity data, co-emitted species and fossil fuel emission models in 

the MVS. 
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• Inter-comparison of different modelled biogenic products with independent data (e.g. 

CHE D2.3 and CHE D3.2) from global, regional to local scales in order to quantify 

uncertainties and to understand the sources of biogenic variability and error. Such 

activity would help to improve the characterization of the CO2 background 

concentration and its variability. 

 

These activities will be further developed in the future CoCO2 project based on specific 
recommendations collected in this report (section 5) and the accompanying reports of the 
different building blocks in the CO2 MVS prototype (CHE D5.2, D5.6, D5.8). All the 
recommendations will be integrated in a final report (CHE D5.9) for the design of the 
operational CO2 MVS prototype. 

 

8 Acronyms 

Table 4 List of acronyms 

APO Atmospheric Potential Oxygen 

CAMS Copernicus Atmosphere Monitoring Service 

CASA Carnegie-Ames-Stanford Approach 

CFL Courant–Friedrichs–Lewy or CFL condition 

CNRM Centre National de Recherches Météorologiques 

COSMO Consortium for Small-scale Modeling 

CTM Chemical Transport Model 

DGVM Dynamic Global Vegetation Model 

ECMWF European Centre for Medium Range Weather Forecasts 

EDGAR Emissions Database for Global Atmospheric Research 

EEA European Environmental Agency 

EMEP European Monitoring and Evaluation Programme 

EO Earth Observation 

EMPA Swiss Federal Laboratories for Materials Science and Technology 

ESA-CCI European Space Agency – Climate Change Initiative 

ESM Earth System Model 

EULAG Eulerian/semi-Lagrangian fluid solver 

FAPAR Fraction of Absorbed Photosynthetically Active Radiation 

GEMS Global Earth-system Monitoring using Satellite and in-situ data 

GLCC Global Land Cover Characterization 

GOBM Global Ocean Biogeochemistry Models 

GPP Gross Primary Production 

ICOS Integrated Carbon Observation System  
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IFS Integrated Forecasting System 

IEA International Energy Agency 

IPCC The Intergovernmental Panel on Climate Change 

IPSL Institut Pierre Simon Laplace 

LAI Leaf Area Index 

LEO Low Earth Orbit 

LM Lagrangian model 

LMDz Laboratoire de Météorologie Dynamique (LMDz) GCM 

LPDM Lagrangian Particle Dispersion Models 

LUE Light Use Efficiency 

MACC Monitoring Atmospheric Composition and Climate 

NASA National Aeronautics and Space Administration 

NCAR National Center for Atmospheric Research 

NEE Net Ecosystem Exchange 

NRT Near Real Time 

NWP Numerical Weather Prediction 

ORCHIDEE Organising Carbon and Hydrology In Dynamic Ecosystems 

PFT Plant Functional Type 

RESP Ecosystem Respiration 

SiB Simple Biosphere 

SIF Solar Induced Fluorescence 

SDBM Simple Diagnostic Biosphere Model 

SOCAT Surface Ocean CO2 ATlas 

TCCON Total Carbon Column Observing Network 

TNO Netherlands Organisation for Applied Scientific Research 

UNFCCC United Nations Framework Convention on Climate Change 

VPRM Vegetation Photosynthesis and Respiration Model 

WRF Weather Research and Forecasting 
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