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1 Executive Summary 

This deliverable document reports on the ingredients required for a robust representation of 
uncertainties in the main building blocks of the CHE prototype anthropogenic CO2 emissions 
monitoring system including the prior, observation, model and methodological uncertainties. 
All components of this CHE prototype are considered here to provide a consolidated view on 
the characterisation of uncertainties. The individual components themselves are discussed in 
their respective reports: Observations in D5.2, emissions and transport models in D5.4, 
inversion / data assimilation methodology in D5.6 while D5.9 provides a synthesis of these 
building blocks for an end-to-end prototype system. The focus of this report is first to list the 
uncertainty components of the individual building blocks for the prototype and how they 
contribute to the overall posterior uncertainty estimations, second to identify tools and metrics 
to evaluate and benchmark the posterior uncertainty estimates of the prototype, and third to 
identify and prioritise the immediate development needs (to be achieved in the H2020 CoCO2 
project) of the prototype with respect to the uncertainty representation as well as longer term 
research needs (potentially to be addressed in future Horizon Europe research calls) together 
with an estimate of the required efforts. The overall posterior uncertainty estimate of the CHE 
prototype arises from uncertainties in the prior data, the model uncertainty, uncertainties in 
the observations as well as from the ability of the inversion / data assimilation system to 
correctly provide the posterior uncertainty given the uncertainties of the before listed 
ingredients.  
 
An important aspect for the development of the CHE prototype is to identify the research needs 
for the near-term (next 3-4 year) development steps. This report lists these immediate 
development needs with an estimate of the required effort for the prototype with respect to the 
uncertainty representation in Table 3. It also provides a high-level overview of research needs 
beyond the near-term development needs (Table 4). Besides identifying the development 
needs this report also suggests a prioritisation of the near-term development steps for the 
prototype. The three most important and beneficial (in terms of posterior uncertainty 
representation) priorities are:  

• uncertainty and bias reduction in biogenic flux estimation (by including additional 
observations, e.g. SIF), 

• use of activity data (aircraft and ship movements, traffic density, energy use, etc.)  for 
estimating/modelling fossil fuel emissions, 

• benchmarking and evaluating the posterior uncertainty estimates of the prototype 
(including use of urban eddy covariance data, internal consistency checks and 
evaluation of ensemble spread in ensemble systems, e.g. using rank histograms, and 
intercomparisons between idealised setups). 

 
The biogenic fluxes play an important role in the estimation of anthropogenic CO2 emission 
from atmospheric concentration data because the atmosphere - with its integrating capacity - 
does not allow to distinguish between the sources of atmospheric CO2. Hence, any improved 
knowledge on the biogenic fluxes, which are typically an order of magnitude larger than the 
anthropogenic emissions, will directly benefit to the quantification of anthropogenic CO2 
emissions. Knowledge on the biogenic fluxes can be improved by rigorous evaluation of 
terrestrial carbon cycle models against observations but also by model intercomparisons. 
Further, additional observations such as sun-induced fluorescence (SIF) can be used to 
constrain the photosynthesis process representation in the terrestrial carbon cycle models. 
 
Activity data such as aircraft and ship movements, traffic density, energy use but also 
meteorological predictors (e.g. as a proxy for residential heating) contain important information 
for providing better and more timely estimates of fossil fuel emissions on high temporal and 
spatial resolution, and for reducing uncertainties in the prior estimates. Alternatively, these 
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data can also be used for constraining models of sectorial fossil fuel emissions that can be 
used as an integrated component in the prototype.  
 
An evaluation and benchmarking system for posterior uncertainty estimates of the prototype 
could encompass two pillars. The first would include independent observations (e.g. eddy 
covariance data reported anthropogenic emissions) and would allow a comparison of the 
intrinsic uncertainty ranges provided by the prototype with the uncertainty ranges derived from 
independent observations. The second pillar could assess, for selected (and possibly 
idealised) cases, the impact of approximations imposed by the design of a prototype (e.g. the 
ensemble size) on its estimates of the intrinsic uncertainty. Such assessments would rely on 
alternative approaches allowing a more exhaustive representation of posterior uncertainty. 
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2 Introduction of the Building Block 

2.1 Background 

 
The CHE prototype aims at building a system to monitor the exchange of CO2 and potentially 
other important man-made greenhouse gases like CH4 between the Earth’s surface and the 
atmosphere with the use of observations (mostly in the atmosphere), models and prior 
information including the specification of uncertainties. The system is designed to support the 
Paris Agreement and follows the directive of the EC as described by the Task Forces on CO2 
(Pinty et al., 2017). The general rationale and strategy for the CHE prototype is provided in 
D5.9, stemming from the discussions in the first WP5 workshop (Reading, 25-26 September 
2019). The main challenges are addressed with the following recommendations: 
 

• Multi-scale approach to monitor emissions from point sources (power stations or 
industrial facilities), cities and countries using different model domains from global, 
regional to local and varying model resolutions (e.g. from 25km to 100m). 

• Multi-species approach to detect and attribute the observed atmospheric signal to 
specific sources/sinks (e.g. natural and anthropogenic emissions with sectorial 
distribution). 

• Multi-stream approach to support different applications and users with a near-real time 
stream focusing on shorter synoptic timescales designed to provide early warnings 
and giving feedback to data producers, and a re-analysis stream that uses 
consolidated quality-controlled data, products and models with their associated 
uncertainties to estimate trends. 

 
Figure 1: Building blocks of the CHE prototype with associated uncertainties and the specific 
deliverable reports associated with the specific building blocks. 

This report covers the ingredients required for a robust representation of uncertainties in the 
building blocks of the CHE prototype including the prior, observation, model and 
methodological uncertainties (see Figure 1 and Table 1). A key focus of the report is on the 
derivation of posterior uncertainty and the validation of those uncertainty estimates to assess 
the accuracy of the CO2 monitoring system.  
 
Aspects of uncertainty include, but are not limited to, prior uncertainty, transport model 
uncertainty, observation uncertainty (see deliverable D5.1 for more details), and posterior 
uncertainty. The correct representation and attribution of each uncertainty component is 
essential to construct an accurate operational CO2 monitoring system. This report outlines 
these aspects of uncertainty and expands on two methodologically different systems to 
quantify the theoretical posterior uncertainty. Furthermore, it focuses on details of 
benchmarking/validation activities, which can be used for assessing the accuracy of posterior 
uncertainties. 
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2.1.1 Prior Uncertainty 

The prior uncertainty will be used to inform the assimilation system, which in turn will provide 
a posterior error reduction, which then needs to be validated using independent observations 
(see D5.1 for more details on independent observations). Depending on the methodology the 
prior uncertainty takes on different forms. In a direct estimation of CO2 fluxes by atmospheric 
transport inversion (in the following referred to as inversions) the prior uncertainty consists of 
spatio-temporal mapping of error statistics in the flux components that contribute to the 
atmospheric CO2 concentration observations. 
 
Prior flux uncertainties will be based on the available knowledge from state-of-the-art bottom-
up inventories and terrestrial ecosystem models. However, given the level of uncertainty in 
those estimates, further adjustments for the prescribed prior error covariance matrix will be 
needed. In particular, flux error correlations are poorly known in current bottom-up inventories 
(see D3.2 and D3.3 for more details on this aspect of uncertainty) and models (e.g. Chevallier 
et al., 2012). 
 
In the case of process model optimisation (by estimating model process parameters but also 
model state variables and initial and boundary conditions) in a comprehensive data 
assimilation system (in the following referred to as data assimilation) the prior uncertainty 
enters the system as uncertainty on the parameters to be optimised, the so-called parametric 
uncertainty (see also Scholze et al., 2012). These prior parameter uncertainties are usually 
derived from literature studies, field-scale measurements (e.g. in the case of the terrestrial 
biosphere), databases (e.g. plant trait database), or plausible assumptions. This approach 
does not require prescribed spatio-temporal error correlations in the prior flux field because 
the process models help to specify the uncertainty structure. The a priori assumption here is 
that there are no error correlations among the process parameters.  
 
In summary, the prior flux uncertainty consists of: 

• Spatio-temporal mapping of the uncertainty in the biogenic and anthropogenic fluxes. 

• Process uncertainty and missing processes in the biogenic and anthropogenic models. 

• Both mapping and process uncertainty related to other fluxes (e.g. biomass burning). 

• Proxy information uncertainty, relevant to proxy observations (e.g. nightlights, co-
emitted traces, radiocarbon). 

 
D3.3 presents fossil fuel emissions and their uncertainties per sector on spatio-temporal maps 
and D3.2 presents net biogenic fluxes with uncertainties for use as prior information in the 
direct estimation of fossil fuel CO2 fluxes by atmospheric inversions. 
 

2.1.2 Model Uncertainty 

Another important component for the representation of uncertainty in the CHE prototype is the 
transport model error, which forms part of the overall prior uncertainty.  
 
In addition to the transport model, which acts as the observation operator linking the emissions 
to the atmospheric concentrations, uncertainty in any other model included as an observation 
operator in the modelling chain in the CHE prototype adds to the overall model uncertainty. In 
the case of a data assimilation system these are the fossil fuel emissions model and also the 
terrestrial carbon cycle model. 
 
The model (transport as well as other process models) uncertainty consists of: 

• Uncertainty in the model input data, e.g. meteorological fields from a reanalysis product 
or from an operational numerical weather prediction (NWP) system for offline models. 

• Structural uncertainty in the physics and parameterisation of model processes, 
including missing processes (e.g. atmospheric convection). 
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• Systematic model biases. 
 

2.1.3 Observation Uncertainty 

Observations and their uncertainties must also be considered, both observations used in the 
inversion or data assimilation but also observations used for the validation of the posterior 
fluxes, which are key components as well. The details of the observation uncertainty (including 
the CO2M satellite observations) that enter the inversion or data assimilation system are 
described in D5.2.  
 
In short, the observation uncertainty consists of: 

• Systematic and random error statistics of all observations. 

• Model uncertainty including models to derive higher level products, e.g. retrieval 
algorithms to derive column CO2 measurements from radiances).  

• The representation error, which occurs because of coarse resolution model trajectories 
being compared to point measurements or finer resolution (e.g. satellite footprint) 
observations or mismatches in the spatio-temporal representation in the model. 

 

2.1.4 Methodological / Posterior Uncertainty 

Finally, the methodological error arises essentially from the ability of the chosen methodology 
to adequately represent the posterior uncertainty, an issue which is discussed in more detail 
in Section 4.  
 
 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

The objective of this deliverable is to report on requirements for representing the different 
sources of uncertainties in the localisation of CO2 surface emission sources and the methods 
to reliably represent uncertainties and their variability with geographical, temporal and 
environmental conditions. Further, this report provides and prioritises recommendations for 
the development of a prototype MVS capacity as part of the H2020 CoCO2 project as well as 
recommendations for framing a future research agenda in support of an operational MVS 
capacity. 
 
In the following sections the guiding principles for the uncertainty components are laid out 
followed by a more detailed consideration for the prior emissions and transport model 
components. Two hypothetical examples for posterior uncertainty estimation are provided. 
Finally, priorities for implementation by 2023 and for longer term research needs are outlined 
in Sections 4 and 5. 

 

2.2.2 Work performed in this deliverable 

Consultation with the partners involved with the respective tasks in WPs 1-3 and synthesis of 
this work with ESA-funded projects as well as literature on carbon cycle. 

 

2.2.3 Deviations and counter measures 

Not applicable. 
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Table 1 : Uncertainty components and state of knowledge of them in an anthropogenic CO2 

inversion / data assimilation system 
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3 Uncertainty Components of the CHE Prototype 

3.1 Principles for the uncertainty components in the CHE prototype 

The end product of the CHE prototype will consist not only of the flux estimates, but also 
posterior uncertainties, which will be validated using independent observations, for example 
flux towers, with the same consideration for errors such as the representation error. 
 
There are multi-options for representation of the process/mapping prior uncertainty within a 
proposed prototype that include: 

• Deriving statistics of prior variables vs. observation comparisons 

• Multi-model for the transport component (e.g. Offline chemical transport models and 
Online NWP). 

• Multi-model for the biogenic component (e.g. different photosynthesis and respiration 
schemes). 

• Perturbed-flux inventory for the anthropogenic component (e.g. based on log-normal 
uncertainties). 

• Multi-physics in the transport (e.g. convection and planetary boundary layer schemes). 

• Perturbed-physics in the transport (e.g. Stochastically perturbed parameterisation 
tendencies). 

• Multi-resolution for the representation component (e.g. comparing 1km resolution with 
9km transport model). 

 
The guiding principles for setting up a multi-model, multi-stream prototype are as follows: 

• Modelling groups are required to use a consistent prior uncertainty, which is used in 
the derivation of posterior uncertainties. These include formulating the prior error 
correlation structures, or similar prior uncertainty for aggregated regions. 

• The derivation/approximation of posterior uncertainties must also be consistent 
between assimilations. 

• The benchmarking should consist of an evaluation of multiple aspects of posterior 
uncertainty and beyond just concentration data as currently done in atmospheric 
transport inversions, e.g. evaluation of the uncertainty in fluxes, parameters and any 
other proxy information. 

 
As mentioned in Section 2.1.3 the observational uncertainty is discussed in more detail in the 
deliverable report D5.1. 
 

3.2 Uncertainty estimates for the prior emissions component 

The 2006 IPCC guidelines, with 2019 refinements, outline the methodology by which 
anthropogenic emission uncertainties can be calculated based on emission factors and activity 
data for multiple sectors (70+). These uncertainties calculated at the national scale can be 
applied to gridded emission maps from the EDGAR v4.3.2 dataset. Uncertainties are 
calculated dependent on the statistical development of a nation, with countries either being 
classified as having either well (WDS) or less (LDS) developed statistical systems. Currently 
monthly uncertainty calculations are derived using the following steps (see Figure 2): 
 

• The emission factor and activity data uncertainties are first combined for each IPCC 
activity preserving non-symmetrical upper and lower limits. This method accounts for 
only the most common fuel type per each activity, e.g. for aviation – Jet Kerosene, 
railways – Diesel, shipping – composition of 80% Diesel and 20% Residual Fuel Oil, 
and road/off-road transport – the most typical emission factor uncertainty is used (not 
fuel type, recommendation of IPCC2006). 
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• The original IPCC sectors are grouped into 20 EDGAR sectors following the error 
propagation methodology. Systematic underestimation is corrected following Frey 
(2003), with Monte Carlo approach comparisons if the uncertainty half-range is within 
the 100-230% range. 
 

• All annual uncertainties are calculated with lower and upper bounds, which are then 
used to generate assumed log-normal uncertainty distributions. This prevents a 
probability distribution function with negative emissions from being constructed. The 
methodology, which follows that of IPCC (2006), calculates a geometric mean (which 
can be estimated based upon the arithmetic mean and arithmetic standard deviation) 
and a geometric standard deviation.  
 

• If the lower uncertainty range ≥ 50%, then the methodology outlined by Frey (2003) is 
applied to ensure the lower probability density function (PDF) range does not fall below 
100%. Following this method, the decrease in the lower uncertainty range causes an 
approximately symmetric relative increase in the upper uncertainty range.  
 

• The 20 EDGAR sectors are then combined further into 7 sectors following the error 
propagation method. This is done to reduce the size of the control vector within the 
CHE prototype. The grouped sectors are determined based on similarities in: 
 

➢ Activity type (point sources, 3D field, etc.).  
➢ Knowledge of the activity (uncertainty value).  
➢ Geographical distribution (e.g. over urban areas only).  
➢ Emissions of CO2 co-emitting species (e.g. CH4, CO, NO2). 

 

• Monthly uncertainties are calculated using an iterative approach, which is based on 
the methodology used to generate annual uncertainties (Figure 2). Estimates are 
derived using monthly emission budgets and annual prior uncertainties. These 
underestimate the monthly variability of emissions and need to be inflated 
proportionally to the error propagation method used for annual and summed monthly 
values. The Inflation step is repeated until the change in inflation value is ≤ 0.01. 
 

• The calculated mean and standard deviation of the log-normal distribution can then be 
used for inverse modelling and emission perturbations, assuming that the lower and 
upper uncertainty bounds are the 2.5th and 97.5th percentiles, respectively, of the 95 
percent probability range. 

 
The derived uncertainties are country and sector specific, with global values provided in D5.3. 
Further details of the derivation of annual and monthly uncertainties will be described in an 
upcoming manuscript (Choulga et al., 2020). Currently, these calculations provide an 
uncorrelated prior uncertainty. Further work should aim to develop spatially and temporally 
correlated uncertainties and uncertainties at a high temporal resolution (monthly or higher 
frequency). 
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Figure 2: Schematic of methodology used to derive national annual and monthly uncertainties 
from activity and emission factor data through to a log-normal uncertainty distribution for 7 
sectors per country. 

 

3.3 Uncertainty estimates for the transport model component 

The representation of uncertainty in atmospheric transport models is essential for estimating 
accurate posterior information within an inversion system. Uncertainties that are present in 
either offline, online or both offline and online models include those relating to: 

• The initial 3D CO2 model field.  

• The initial meteorological conditions. 

• The model physics relating to advection, convection and diffusion. 

• Numerical uncertainty. 

• The model representativeness. 

In addition to these, within an earth system modelling context, uncertainties in meteorological 
variables can feedback on biogenic or even modelled anthropogenic fluxes.  
 
Uncertainties in the initial conditions can occur from uncertainties in the observations used to 
derive the analysis fields. For NWP, it is typically too computationally costly to calculate the 
full analysis uncertainty, but the uncertainty can be represented using ensemble-based data 
assimilation approaches (such as the ensemble Kalman filter) or through an ensemble of data 
assimilations (EDA). These methods provide an ensemble of initial conditions based on prior 
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and observational uncertainties and have successfully been used operationally within the 
NWP community (e.g. Leutbecher and Palmer 2008). 
 
Uncertainty in the modelled atmospheric transport of CO2 due to uncertain meteorological 
conditions can be quantified using ensemble forecasts with perturbed meteorological initial 
conditions according to the NWP analysis uncertainty (see Chen et al., 2019). An advantage 
of using ensembles is that they can capture the flow-dependent shape of the transport model 
errors. The spatial correlation structure in transport model errors has been ignored in most 
inversions using in situ observations but is likely important to consider especially when 
assimilating dense satellite XCO2 observations to avoid potential biases in the posterior. 
 
Ensembles of different transport models can be used to quantify aspects of uncertainty in 
model dynamics and physics, for example by using different physics schemes (or, favourably, 
different models, i.e. multi-model) relating to turbulence, convection or diffusion. These 
ensembles represent uncertainty due to different model options; however, systematic errors 
inherent in the model or the multiple schemes remain unaccounted for in the derived 
uncertainty. An alternative method to estimate uncertainties in model physics is to use an 
ensemble of perturbed physical tendencies. Assuming the perturbations represent the 
uncertainty associated with the physics scheme, these ensembles can generate a suitable 
representation of model error. A recent study uses both an EDA and an ensemble of perturbed 
physical tendencies to quantify the model transport uncertainty for CO2 modelling, which can 
be used to represent the model uncertainty in the CHE prototype (McNorton et al., 2020). The 
uncertainty in biogenic fluxes related to the transport uncertainty is also highlighted and should 
be considered as part of the model uncertainty in any future CO2 inversion system.  
 
Numerical uncertainty in transport models arise from computational errors relating to 
discretisation, interpolation and numerical diffusion. Accurate quantification of these errors is 
required for appropriate uncertainty attribution. 
 
The representation error consists of two components. First, the internal model component, 
which relates to the model inversion resolution being lower than that of the forward model (see 
Engelen et al., 2002 for more details). Secondly, the error that arises from spatiotemporal 
differences between model and observations, for example a point measurement compared to 
a model grid box average. This error is expected to be reduced as both forward and inverse 
model resolution increases, and to an extent can be quantified using multi-resolution models 
(see Agustí-Panareda et al., 2019 for more details). 
 
A noteworthy aspect of the transport model error is that it saturates over time, and thus has 
consequences for the assimilation time window such that longer time windows will not suffer 
from increased transport model errors (long-time windows are preferable for the CO2 problem 
because of the integrating capacity of the atmosphere). However, it should be noted that 
model biases typically continue to grow with time. 
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Figure 3: Global standard error of IFS model XCO2 (ppm) across 50-member ensemble after 10 
days. Errors shown are from model transport uncertainty relating to initial meteorological 

conditions and model physics. 

 

3.4 Examples of posterior error quantification from OSSE and QND studies 

3.4.1 Observation Simulation System Experiments with an atmospheric 
transport inversion system 

This example relies on an analytical Bayesian inversion system designed within CHE around 
the regional chemistry transport model CHIMERE (Menut et al., 2013). The transport 
modelling domain covers the Western part of Europe with a horizontal resolution that varies 
between 50 and 2 km. The 2 km × 2 km-resolution zoom covers Northern France, a large part 
of Benelux and Western Germany. The analytical Bayesian inversion (Wu et al., 2016) allows 
for the computation of the posterior uncertainty in the inverted flux budgets (its covariance 
matrix A) as a function of the observation operator H (connecting the fluxes to the observation 
vector, and mainly built on the transport model), the covariance matrices of the prior 
uncertainties B and the model and observation errors R following Tarantola (2005): A = [B-

1+HTR-1H]-1. Actual observation values are not needed. 
 
Figure 4 shows an uncertainty reduction estimate for 1 day in January. Control variables in 
the estimation problem are biogenic CO2 hourly fluxes and CO2 and CO emissions from fossil 
fuel and biofuel in 6 anthropogenic sectors and ten regions (including one for the rest of the 
domain). The 1-σ prior uncertainty is set to 50% for the regional, city or point source hourly 
budgets of natural or anthropogenic fluxes from ecosystem models and inventories. The 
temporal auto-correlations of this prior uncertainty have a 3-hour temporal scale. No 
correlation is assumed between different regions/cities/point sources, sectors and between 
natural and anthropogenic emissions, but a correlation of 0.8 is assigned between 
anthropogenic CO2 and CO prior emission uncertainties. Figure 4 presents two configurations 
using or not using CO surface measurements in addition to the satellite retrievals. A modest 
impact of the CO ground-based measurements on the estimated CO2 flux is seen for that 
study day. 
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Figure 4: Uncertainty reduction for the fossil fuel CO2 fluxes between midnight and 1 pm on 5 
January 2015. Assimilated data are either (left) a CO2 column image at noon (swath 200 km; σ 
= 1ppm; hashed area) or (right) the same with surface CO in situ measurements (from 10 am to 

4 pm; σ = 5ppb; red dots). 

 

3.4.2 Quantitative Network Design with a Carbon Cycle Fossil Fuel Data 
Assimilation System 

Quantitative Network Design (QND) is a technique that assesses the value of observations for 
constraining model uncertainties by propagating uncertainties through a modelling chain. The 
observations can be from a real or hypothetical network; thus, QND is useful for network 
design and to efficiently evaluate different observational strategies. Here the modelling chain 
is the Carbon Cycle Fossil Fuel Data Assimilation System (CCFFDAS), which is a global 
system that couples the Fossil Fuel Data Assimilation System (Asefi-Najafabady et al., 2014) 
and the Carbon Cycle Data Assimilation System (Kaminski et al., 2017). 
 
CCFFDAS consists of two process-based models that simulate the fossil fuel emissions and 
terrestrial carbon cycle. The CO2 fluxes from these models depend on a set of uncertain model 
parameters, which can be constrained by assimilating various observational data streams. 
The links between model parameters and observations are established through the process 
models and different forward models as described in Kaminski et al. (2020). 
 
CO2 surface fluxes from the fossil fuel and terrestrial biosphere models are linked to 
atmospheric CO2 concentrations through the global atmospheric transport model TM3. The 
atmospheric transport is represented by pre-computed response functions. For the 
experiments over one week, the response functions provide the sensitivity of CO2 
concentrations to CO2 fluxes within the same week. The atmospheric CO2 concentration can 
then be sampled using different sampling strategies that correspond to e.g. in situ CO2 
including radiocarbon or satellite XCO2 observations. Radiocarbon is a tracer that can be used 
to separate fossil fuel emissions (essentially radiocarbon-free) from natural carbon emissions 
(Levin et al., 2003). 
 
The fossil fuel emissions model parameters are constrained by additional data streams 
including nightlight intensity and national total emissions from inventories for the two sectors. 
Nightlight observations are used as proxies for GDP and population density. Emission 
inventory data from e.g. IEA are treated as observations and can be assimilated to provide 
additional constraints on the process parameters in the fossil fuel emissions component. 
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Table 2: Posterior uncertainty in national CO2 fossil fuel emissions (MtC/week) during the first 
week of June 2008 for two sectors and five selected countries: Australia (AUS), Brazil (BRA), 

China (CHN), Germany (DEU), and Poland (POL). 

 Other sector Electricity generation sector 

Experiment AUS BRA CHN DEU POL AUS BRA CHN DEU POL 

In situ 15 sites 9.03 16.69 177.31 12.18 4.69 0.28 0.17 2.36 0.43 0.23 

In situ 15 sites with 
radiocarbon 

9.03 16.69 177.26 11.18 4.06 0.28 0.17 2.36 0.43 0.23 

In situ 141 sites 6.84 11.85 10.75 3.76 3.12 0.28 0.17 2.36 0.43 0.23 

In situ 141 sites 
with radiocarbon 

5.71 8.75 9.09 2.99 2.31 0.28 0.17 2.36 0.43 0.23 

1 satellite 0.30 0.42 3.43 0.97 0.38 0.27 0.17 2.21 0.43 0.23 

4 satellites 0.25 0.29 2.38 0.79 0.33 0.26 0.17 2.07 0.43 0.23 

1 satellite and 
national inventory 

0.03 0.03 1.84 0.08 0.05 0.04 0.06 0.07 0.07 0.05 

 
The coverage and uncertainty (random and systematic) of XCO2 observations as well as the 
locations of the in situ stations are shown in Figure 5. This space-borne observation network 
is compared with a network of in situ observations with 15 and 141 sites of both only CO2 and 
CO2 and 14CO2. Nightlights are used as an additional data stream in all experiments, while 
national inventory data were left unassimilated except for in one experiment. After obtaining 
the posterior parameter uncertainties, the uncertainties were propagated forward through the 
modelling chain to provide uncertainties for national fossil fuel emissions from the two sectors 
for five selected countries. 
 
Error! Reference source not found. lists the posterior fossil fuel emissions uncertainties for 
seven different experiments. Assimilation of CO2 observations and nightlights yield only 
marginal uncertainty reductions for the electricity generation sector, but for the other sector 
there is a noticeable difference in posterior uncertainties between assimilating in situ 
observations and XCO2 from satellites: posterior uncertainties when assimilating XCO2 from 
a single satellite are generally an order of magnitude smaller compared with when assimilating 
only in situ CO2 observations. Also, adding radiocarbon observations has very little effect in 
the case of the 15-site network, however, for the larger 141-site network and countries with 
large terrestrial fluxes such as Brazil and Poland radiocarbon helps to separate fossil fuel 
emissions from natural exchange fluxes. Finally, simultaneous assimilation of XCO2 
observations and information from a national inventory results in another order of magnitude 
reduction in posterior uncertainties. 
 
The QND approach provides not only posterior uncertainties (variances), but also the posterior 
covariances between process parameters. These covariances can indicate whether the 
observations are sufficient to separate between e.g. fossil fuel emissions from different 
countries or sectors. Moreover, because the QND approach uses the full PDFs, it can be used 
to evaluate potential problems caused by undersampling in ensemble-based systems due to 
insufficient ensemble sizes. This has been illustrated with CCFFDAS by comparing the 
posterior uncertainty for the other sector calculated by inverting the full Jacobian with inverting 
an approximation of the Jacobian using the leading Eigenvalues from an Eigenvector 
decomposition of the full Jacobian. As can be seen in Figure 6 for the example countries Brazil 
and China the estimated posterior uncertainty using the first 20 Eigenvalues is substantially 
higher than from the full Jacobian: >800 MtC/yr versus 16 MtC/yr for Brazil, and >1100 MtC/yr 
versus 133 MtC/yr for China. Thus, an ensemble with an insufficient ensemble size may not 



C0
2 
HUMAN EMISSIONS 2020  

 

D5.8 Final report on uncertainty representation  19 

be able to take advantage of all information provided by observations without advanced 
ensemble techniques such as covariance localisation. 
 

 

Figure 5: Upper four panels: Random (top) and systematic (middle) errors in CO2 retrievals (ppm) 
from one (left) and four (right) satellites during the first day of June 2008. Bottom panels: 
Locations of in situ sites for network with 15 (left) and 141 (right) sites. Note that the retrieval 

errors shown here are aggregated on a 0.5 grid (individual 2 km by 2 km pixels have larger 
errors). 
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Figure 6: CCFFDAS posterior uncertainties of national total emissions (other sector and first 
week of June) from full Jacobian (black) and leading Eigenvalue approximation (red); left for 
Brazil and right for China. 

 

At high resolutions (local, plume scale), the derivation of posterior estimates and 
representation of posterior uncertainty may be affected by highly nonlinear and non-Gaussian 
errors (e.g. representation error), which could pose problems for the assimilation scheme (e.g. 
consider a misaligned CO2 plume). 

 

3.5 Validation of posterior fluxes 

For a full evaluation of the monitoring system, the posterior estimates need be evaluated 
against independent information as far as possible. Such evaluation or benchmarking 
activities are useful to demonstrate the quality of the development building blocks and the 
prototype system over time. An example for an existing benchmarking system for terrestrial 
biosphere models is the International Land Model Benchmarking project (ILAMP, Hoffman et 
al., 2016). A first approach for benchmarking atmospheric transport models has been outlined 
by Chevallier et al. (2019), however, focussing only on atmospheric CO2 data. The 
atmospheric data should encompass multiple observation/variable types, e.g. flux-towers, 
surface concentrations, column concentrations and aircraft profiles. For the monitoring system 
this benchmarking needs to be more comprehensive and must evaluate the posterior results 
of the prototype. For this, it is important to establish independent observations, which are 
suitable for validation of posterior estimates and uncertainties at all temporal and spatial 
scales, for which posterior information is provided. Work on this has already begun within WP1 
in collaboration with the Global Carbon Project. It may be beneficial to consider three groups 
of observations for the evaluation: (1) Case studies, which can provide targeted information 
and potentially more observations than what is usually available; (2) Continuous observations 
to continually verify the performance of the operational system and detect drifts and biases; 
and (3) Other observations (e.g. from remote sensing) that could be useful for validating the 
spatiotemporal variability or trends in the posterior estimates. 
 
Validation exercises should consider uncertainties in the observations that are usually not 
accounted for, for example when validating posterior flux estimates over an urban 
environment, it might be suitable to use multiple flux sites over one model grid box if possible, 
to account for the representation error. 
 



C0
2 
HUMAN EMISSIONS 2020  

 

D5.8 Final report on uncertainty representation  21 

Since the available observations to evaluate the monitoring system are limited, cross checks 
against other systems (i.e. intercomparisons) and consistency checks within the system are 
necessary. Cross checks against other systems require the availability of inversion / data 
assimilation systems capable of yielding similar posterior fossil CO2 estimates with 
uncertainties. These systems do not necessarily need to have the same complexity but should 
ideally span a range of approaches. In addition, ‘lighter’ systems can also be used to estimate 
the potential posterior error reduction for different observational networks through the above 
mentioned (Sections 3.4.1 and 3.4.2) OSSE and QND studies. Consistency checks need to 
be performed to ensure that the monitoring system correctly represent the underlying 
assumptions; these can also be done by OSSEs or identical-twin experiments. 
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4 Recommendations for the Operational CHE/CoCO2 
Prototype 

This section provides recommendations for the configuration of the building blocks with 
respect to the uncertainty aspect to be implemented in the near-term future, i.e. in the next 3 
to 5 years. Additional immediate development aspects of uncertainty representation for some 
of the individual building blocks, for instance observation uncertainty (d5.2), methodological 
uncertainty (D5.6), transport model uncertainty (D5.4), are detailed in their specific reports. 
Here we mention some development aspects pertaining to the uncertainty representation in 
these building blocks. 
 
The recommendations are listed in Table 3 with an indication of the temporal (near real time 
(NRT)/reanalysis) and spatial (global/regional/plumes) scales. These recommendations are 
prioritised by a colour coding according to their importance for the prototype to be developed 
in the H2020 CoCO2 project. Even a recommendation flagged as low priority is considered to 
be an important development step for the prototype within the near-term future. 
 
In the next three subsections we provide some more general considerations on the 
representation and potential reduction of posterior uncertainties estimation.    
 
 

4.1 Prior Information 

For the prior uncertainty specification within the prototype, there are two general 
considerations: 
 

● Both direct flux estimation by inversions and process model optimisation by data 
assimilation, or a combination of both, require information from the most fundamental 
level. As an example, derived uncertainties from transporting prior fluxes, require 
knowledge of uncertainties of the proxy data which informed the flux dataset. As a 
result, the representation of prior uncertainties within the monitoring system should 
start at the earliest possible stage of the compilation of a prior flux or parameter. 
 

● Each directly actionable aspect of prior uncertainty needs to be incorporated into the 
development of the monitoring system at all scales (global/regional/local). This 
includes prior flux uncertainty, transport uncertainty and observation uncertainty. 

 
 

4.2 Methodological Aspects 

From a methodological aspect, it is important to adopt a consistent method (at all domains 
and streams) for the derivation of the posterior uncertainty. If for any reason this will not be 
the case, then each individual method needs to be benchmarked to ensure consistency across 
scales and systems. 
 
Future work also needs to address the potential of additional data streams (such as co-emitted 
species or radiocarbon) in reducing the posterior uncertainty. This should be done for direct 
transport inversions (as demonstrated in the OSSEs in Section 3.4.1) but also for data 
assimilation systems such as CCFFDAS. Some preliminary work on the potential of adding 
radiocarbon in CCFFDAS has already been performed assuming radiocarbon to be a perfect 
tracer of fossil fuel emissions. In such a case, radiocarbon could provide additional valuable 
information compared with using CO2 observations alone, especially for countries with large 
natural exchange fluxes (see Section 3.4.2). Additionally, it is desirable to extend the 
sectorialisation in FFDAS to resolve the 7 emission groups mentioned in Section 3.2. This 
could be done by implementing the model behind the emissions calculation for the 7 groups 
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in the CCFFDAS, and thus more observations (such as traffic counts and other activity data) 
could be assimilated to further constrain posterior emission estimates and reduce the posterior 
uncertainty. 
 
When considering ensembles as a representation of prior uncertainty, whether for transport 
or representation error, research should be performed on the trade-off between increasing 
ensemble size or model resolution, as both come at extra computational cost. Unlike resolution 
increases, it is more straightforward to take advantage of parallelisation to increase ensemble 
size, potentially increasing energy costs but reducing wall clock time.  
 
In terms of the inversion / data assimilation methodology underlying the CO2 monitoring 
system, research needs to be performed addressing the question of adequately representing 
posterior uncertainties by the chosen method. When evaluating fossil CO2 emission reduction 
measures the monitoring system needs to be capable of yielding not only estimates of these 
emissions but also of their uncertainties to be able to make robust statements on the effect of 
reduction measures. This is particularly important for ensemble approaches. A PDF of the 
uncertainty at all scales can be represented using ensemble trajectories. But for this the 
ensemble size is important because undersampling fails to correctly represent the PDF and 
eventually introduces a new uncertainty, as demonstrated in Section 4.2 even in the optimistic 
case of an ensemble spanned by the leading Eigenvectors.   
 
 

4.3 Evaluation of posterior estimates and their uncertainty 

As part of the quality control of the overall system each individual modelling building block as 
well as the posterior estimates need to be evaluated. In this respect, a powerful tool to assess 
the consistency of the posterior estimates and their uncertainties from atmospheric inversions 
are intercomparison studies, as has been demonstrated in the past by the TRANSCOM project 
(e.g. Gurney et al., 2002) for the global scale and more recently by the EUROCOM project for 
the regional (European) scale (Monteil et al., 2019). Such intercomparison studies provide 
useful insights on the range of plausible posterior estimates as derived from the whole 
modelling chain and, as such, should be extended to cover also fossil CO2 estimation. 
Intercomparisons should also be made with and within idealised setups, which allow to study 
methodological aspects such as the potential drastic overestimation of the posterior 
uncertainty in ensemble approaches as illustrated by Figure 5. 
 
A useful metric to evaluate the reliability of ensemble systems are rank histograms (Candille 
and Talagrand, 2005) together with an estimate of the ensemble bias as proposed by Feng et 
al. (2019). Rank histrograms measure the spread of the ensemble by ranking the predicted 
variable according to the observations and assess the probability of occurrence of the 
observation within each histogram bin. A flat rank histogram in an unbiased ensemble 
indicates a reliable (consistent with observations) spread in the predicted variable. 
 
Besides intercomparisons it is important to develop benchmarking metrics to a) evaluate the 
posterior uncertainty estimates as far as possible against independent observations and b) to 
demonstrate and document the fidelity of the CHE prototype. The development of these 
metrics need to go hand-in-hand with the creation of appropriate databases containing the 
required observations for the benchmarking (e.g. urban eddy-covariance fluxes, direct activity 
data from different emissions sectors, citizen data such as traffic data collected by e.g. Google 
as far as these are not used in the assimilation). 
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Table 3: Immediate development needs of the prototype with respect to the uncertainty 
representation. The colour coding in the Recommendation cell refers to the priority for 

implementation of the recommendation in the prototype: red - high priority; yellow - medium 
priority; green - low priority. Note that even low priority recommendations are considered to be 

important development steps for the prototype within the near-term future. 

Component Domain Stream Recommendation Estimated 
effort 

Anthropogenic 
emissions 
uncertainty 

global  NRT and 
reanalysis 

Specify emission uncertainty for 
temporal profiles for different sectors at 
weekly, daily, hourly scales 

6 months 

Uncertainty estimates on vertical 
profiles of emissions (e.g. Brunner et al. 
2019) 

6 months 

global, 
regional 

Uncertainty estimates on modelled 
temporal profiles and spatial 
distributions with e.g. meteorological 
predictors (residential heating) or 
activity data such as traffic statistics 
(road sector) to support FFDAS 
approach. 

12 months 

Evaluate uncertainty specification by 
consistency checks, e.g. cross check 
against other inventories 

12 months 

Quantification of the range in emission 
ratios for co-emitted traces (CO and 
NO2) through literature studies (and in 
the longer term through dedicated 
field/lab experiments, see Section 5 
and D3.4) 

6 months 
(literature 
review) 

24 months (lab 
experiments) 

Reanalysi
s 

Sectorialisation of the fossil fuel 
emissions model and specification of 
prior uncertainties within individual 
sectors (e.g. error correlation in power 
generation sector within a country, road 
traffic error correlation in transport 
sector) and derive tangent linear (TL) 
and adjoint (AD) models for the 
respective observation operators for 
each sector 

< 24 months 
(depending on 
the number of 
sectors) 

     

Biogenic flux 
uncertainty 

global, 
regional 

NRT  Evaluate simplified models against 
independent data (e.g. flux data not 
used for model tuning) 

6 months 

Quantify impact of uncertainty in 
mapping of land use on fluxes in global 
and regional models: classification, 
cover, including vegetation, urban and 
wetland mapping 

12 months 
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global, 
regional 

reanalysis Quantify range of land use change 
related emissions from dynamic global 
vegetation models (DGVMs), simplified 
models, and statistical data-driven 
approaches 

12 months 

Inter-comparison of DGVMs and 
simplified models and statistical data-
driven approaches (multi-model 
ensemble to characterise uncertainty) 

18 months 

Global, 
regional 

NRT, 
reanalysis 

Evaluate uncertainties in the 
observations of additional tracers to 
constrain biogenic fluxes (e.g. SIF, 
COS) 

18 months 

global, 
regional 

NRT, 
reanalysis 

Evaluate uncertainties in the 
representation of additional tracers 
(SIF, COS) to constrain biogenic fluxes 
by process studies and comparison of 
observation operators with different 
complexity and derive TL and AD 
models for the respective observation 
operators 

24 months 

     

Observation 
uncertainty 

Global, 
regional, 
local 

NRT, 
reanalysis 

Develop and implement a validation 
strategy for CO2M observations (XCO2 
and NO2) following the approach 
outlined in Pinty et al. (2019). 

36 months 

Develop and create quality-controlled 
databases with observations and their 
uncertainties for evaluation / 
benchmarking of the posterior 
estimates of the prototype: (1) targeted 
case studies (e.g. intensive urban flux 
monitoring campaigns), (2) continuous 
observations for continuously 
monitoring the system’s performance, 
and (3) other observations (e.g. from 
remote sensing) for validating 
spatiotemporal variability or trends. 

12 months 

Global, 
regional 

Extend and harmonise additional 
observations and their uncertainties for 
use in process model data assimilation 
(urban eddy-covariance fluxes, 
nightlights, road traffic, census data 
(population density, GDP), inventories)  

12 months 

Quantify uncertainty in radiocarbon 
observations due to: terrestrial 
disequilibrium (see e.g. Miller et al., 
2012l; and Scholze et al., 2008 for 13C), 
ocean exchange and nuclear power 
plants (Kuderer et al., 2018) 

12 months 
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Inversion / 
data 
assimilation 
methodology 

global, 
regional, 
local 

NRT, 
reanalysis 

Investigate the impact of larger 

ensemble size versus increased model 

resolution in the representation of 

uncertainty by ensemble approaches 

6 months 

global, 
regional 

NRT, 
reanalysis 

Adequate representation of posterior 

uncertainty on relevant spatio-temporal 

scales from methodological approach, 

for instance ensemble size, assimilation 

window length, model resolution  

12 months 

Quantification of the impact of 

approximations imposed by the various 

methodological approaches on the 

posterior uncertainty (definition of 

control vector, length of assimilation 

window) 

18 months 

local NRT, 
reanalysis 

Fingerprinting CO2 plumes and 

investigating the impact of highly 

nonlinear and non-Gaussian error 

structures (e.g. representation error) on 

posterior estimates 

6 months 

     

Posterior 
evaluation / 
benchmarking 

global, 
regional, 
local 

NRT, 
reanalysis 

Develop metrics to objectively 

evaluate/benchmark posterior 

estimates taking into account posterior 

uncertainty and uncertainty of the 

observations/data used for the 

evaluation  

24 months 

Develop a framework for consistency 

checks (model intercomparisons) 

18 months 

reanalysis Support the availability of ‘lighter’ 

systems for cross checks (model 

intercomparison) of the posterior 

uncertainty estimate 

24 months 
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5 Research Priorities 

This section provides recommendations for further research needs in the building blocks with 
respect to the uncertainty aspect likely to be implemented through additional research 
activities within the Horizon Europe programme. Additional research needs for the uncertainty 
representation in some of the individual building blocks, for instance observation uncertainty 
(D5.2), methodological uncertainty (D5.6) and transport model uncertainty (D5.4), are detailed 
in their specific reports. The recommendations are listed in Table 4 with an indication of the 
temporal (NRT/reanalysis) and spatial (global/regional/plumes) scales. For these longer-term 
research recommendations no prioritisation is given. 
 

Table 4: Research priorities linked to the domain (global, regional, local) and stream for 
application in the prototype: Near Real Time (NRT), or re-analysis (RA). An estimate of the 

effort required is given in person months. 

Component Domain Stream Recommendation Estimated 
effort 

Co-emitted 
species 

Global, 
regional, 
local 

NRT, RA Research into feasible co-emitters and 
uncertainty in their co-emission factors 
and emissions. 

12 months 

Process based 
fossil fuel 
models 

Global, 
regional, 
local 

NRT, RA Develop anthropogenic emission models 
and quantify their uncertainty. 

30 months 

Process based 
fossil fuel 
models and 
benchmarking 

Global, 
regional, 
local 

NRT, RA Investigate the feasibility of using (i.e. 
acquisition) citizen data (such as traffic 
counts or mobile network utilisation) for 
constraining sectorial activity   

24 months 

Constraining 
biogenic fluxes 

Global, 
regional 

RA Investigate the uncertainties of 
observations constraining biogenic fluxes 
(SIF, COS) and their observation 
operators 

12 months 

Observations 
of radiocarbon 

Global, 
regional, 
local 

NRT, RA Investigate measurement techniques for 
radiocarbon and their uncertainties 

30 months 

Radiocarbon 
contamination 

Global, 
regional, 
local 

NRT, RA Research uncertainties related to 
contamination of radiocarbon proxy by 
nuclear power plants and terrestrial 
disequilibrium 

18 months 

Numerical 
uncertainty 

Global, 
regional, 
local 

NRT, RA Investigate the numerical uncertainties 
within all models involved within the 
CHE/CoCO2 prototype 

24 months 

Flux 
uncertainty 
estimates 

Global, 
regional, 
local 

NRT, RA Improved inventories, e.g. NRT data and 
uncertainties for different sectors 

18 months 

Cross check 
methods 

Global, 
regional, 
local 

NRT, RA Maintain alternative (potentially lighter) 
approaches for cross checks 

30 months 
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6 Conclusion  

This report summarises the main building blocks in representing uncertainty in an integrated 
anthropogenic CO2 emissions monitoring system. All components of this CHE Prototype are 
considered here to provide a consolidated view on the characterisation of uncertainties. The 
individual components themselves are discussed in their respective reports: Observations in 
D5.2, Emissions and Transport Models in D5.4 and Inversion / Data Assimilation Methodology 
in D5.6 and finally D5.9 provides a synthesis of these building blocks for an end-to-end 
prototype system. The focus of this report is first to list the uncertainty components of the 
individual building blocks for the prototype and how they contribute to the overall posterior 
uncertainty estimations, second to identify tools and metrics to evaluate and benchmark the 
posterior uncertainty estimates of the prototype, and third to identify and prioritise the 
immediate development needs of the prototype with respect to the uncertainty representation 
as well as to list the longer term research priorities together with an estimate of the required 
efforts.  
 
It is suggested to prioritise the following three aspects in the identified near-term development 
needs:  

• Reduction of uncertainty and bias in biogenic flux estimation (by including additional 
observations, e.g. SIF). 

• Use of activity data (aircraft and ship movements, traffic density, energy use, etc.)  for 
estimating and modelling fossil fuel emissions. 

• Benchmarking and evaluating the posterior uncertainty estimates of the prototype 
(including use of urban eddy covariance data, internal consistency checks and 
evaluation of ensemble spread in ensemble systems using e.g. rank histograms, and 
intercomparisons between idealised setups). 

 
The biogenic fluxes play an important role in the estimation of anthropogenic CO2 emission 
from atmospheric concentration data because the atmosphere - with its integrating capacity - 
does not allow to distinguish between the sources of atmospheric CO2. Hence, any improved 
knowledge on the biogenic fluxes, which are typically an order of magnitude larger than the 
anthropogenic emissions) will directly benefit to the quantification of anthropogenic CO2 
emission. Knowledge on the biogenic fluxes can be improved by rigorous evaluation of 
terrestrial carbon cycle models against observations but also by model intercomparisons. 
Further, additional observations such as sun-induced fluorescence (SIF) can be used to 
constrain the photosynthesis process representation in the terrestrial carbon cycle models. 
 
Activity data such as aircraft and ship movements, traffic density, energy use but also 
meteorological predictors (e.g. as a proxy for residential heating) contain important information 
for providing better and more timely estimates of fossil fuel emissions on high temporal and 
spatial resolution and for reducing uncertainties in the prior estimates. Alternatively, these data 
can also be used for constraining models of sectorial fossil fuel emissions that can used as an 
integrated component in the prototype.  
 
An evaluation and benchmarking system for posterior uncertainty estimates of the prototype 
could encompass two pillars. The first would include independent observations (e.g. eddy 
covariance data reported anthropogenic emissions) and would allow a comparison of the 
intrinsic uncertainty ranges provided by the prototype with the uncertainty ranges derived from 
independent observations. The second pillar could assess, for selected (possibly idealised) 
cases, the impact of approximations imposed by the design of the prototype (e.g. the 
ensemble size) on its estimates of the intrinsic uncertainty. Such an assessment would rely 
on alternative approaches allowing for a more exhaustive representation of posterior 
uncertainty. 
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