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1 Executive Summary 

This document reports on the work and the results obtained in task 3.5 ‘Perform QND 
experiments with an advanced data assimilation system (CCFFDAS) to establish inversion 
strategy’. It provides a description of the CCFFDAS modelling framework, the applied QND 
methodology as well as the results obtained from the work performed in task 3.5 ‘Perform 
QND experiments with an advanced data assimilation system (CCFFDAS) to establish 
inversion strategy’. We have developed a prototype of a global Carbon Cycle Fossil Fuel Data 
Assimilation System (CCFFDAS) that combines the functionalities of the Fossil Fuel Data 
Assimilation System by Asefi-Najafabady et al. (2014) and of the Carbon Cycle Data 
Assimilation System by Kaminski et al. (2017a). The CCFFDAS was applied to assess a 
number of design aspects of the upcoming Monitoring and Verification Support capacity as 
part of the Copernicus CO2 Monitoring mission (CO2M). The assessment was based on the 
Quantitative Network Design technique and quantified the mission's performance in terms of 
the posterior uncertainty in the totals of the sectorial fossil CO2 emission rates for selected 
countries and the first week in June 2008. The emissions were classified into two sectors, one 
for electricity generation and the other for all other emissions denoted as the “other” sector. 
We analysed two different observing networks, ground based in situ observations and satellite 
based total column observations, in a range of configurations. 

 
We find that 

• At country scale, a single CO2M satellite achieves posterior uncertainties in the weekly 
sectorial emission rates well below the weekly emission rate for the national total for 
the sectors, assuming that annual emissions are evenly divided between all weeks. 

• For each sector, a constellation of four satellites achieves a larger reduction in 
posterior uncertainty, i.e. the number of satellites matters. This added value of the extra 
satellites is more pronounced for the other sector than the electricity generation sector, 
where the uncertainty over China is reduced by about 30% for this particular case (first 
week in June 2008) when going from a single satellite to the four-satellite constellation. 
This is below the theoretical possible 50% reduction due to the different satellite tracks 
and with it differences in cloud cover and systematic errors for this particular week. 

• Correlated systematic errors in the satellite XCO2 can seriously degrade the 
performance, resulting in increased posterior uncertainties from 15% to almost 130% 
relative to the case with no systematic errors. 

• The representation error due to the mismatch in resolution between the satellite 
images and the atmospheric transport model increases posterior uncertainties, 
however, these uncertainties will be decreased when the resolution of the transport 
model is increased. 

• If national inventories at weekly time scale were available, their inclusion would result 
in a strong reduction in posterior uncertainty (the largest reduction we obtained from 
all our experiments) compared with using atmospheric observations only, which 
quantifies the synergy / complementarity between the atmospheric (and other) 
observations and the inventories. The synergistic exploitation of diverse data steams 
is a particular strength of the CCFFDAS approach. However, by including national 
inventory data in the assimilation the obtained results are not an independent 
estimation of the emissions from atmospheric data anymore. 

• A hypothetical projection of the posterior uncertainties in the weekly emission rate to 
the annual scale shows the potential for a CCFFDAS / CO2M verification mode 
(operating independently from the inventories), which may provide useful information 
that is complementary to the inventories with uncertainty ranges in the same order of 
magnitude. 

• The inclusion of surface observations does not result in substantial uncertainty 
reductions for sectorial emissions compared with the default experiment with one 



C0
2 
HUMAN EMISSIONS 2020  

 

D3.6 Inversion strategy based on joint QND assessments 8 

satellite. However, we note that the current in situ network was not designed for 
observing anthropogenic emissions, nevertheless it is important to observe 
background conditions and validate satellite measurements. 

• Adding radiocarbon observations helps to further constrain emission rates from the 
other sector especially for countries with a larger proportion of biogenic fluxes such as 
e.g. Brazil and Poland. 
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2 Introduction 

2.1 Background 

The CO2 Human Emissions (CHE) project has been tasked by the European Commission to 
prepare the development of a European capacity to monitor anthropogenic CO2 emissions. 
The monitoring of fossil fuel CO2 emissions has to come with a sufficiently low uncertainty in 
order to be useful for policymakers. In this context, the main approaches to estimate fossil fuel 
emissions, apart from bottom-up inventories, are based on inverse transport modelling either 
on its own or within a coupled carbon cycle fossil fuel data assimilation system. Both 
approaches make use of atmospheric CO2 and potentially other tracers (e.g., radiocarbon, co-
emitted species such as CO and NOx) and either rely on the availability of prior fossil fuel CO2 
emission estimates and uncertainties (for inverse transport modelling), or are able to make 
use of such information as an additional constraint (in the carbon cycle fossil fuel data 
assimilation system). Inverse transport modelling also requires prior biogenic flux estimates 
and uncertainties. 
 
WP3 evaluates the current status of uncertainty quantification in fossil fuel emissions through 
bottom-up inventories as well as inverse modelling and data assimilation. For the latter top-
down methods, possible improvements in uncertainty reduction from enhanced space-borne 
and in situ observation scenarios for fossil CO2 emissions are quantified based on observing 
system simulation experiments (OSSEs) and quantitative network design (QND) studies using 
different approaches: a) high resolution inverse transport modelling of CO2 and co-emitted 
species and b) advanced carbon cycle-fossil fuel data assimilation system (CCFFDAS) 
integrating atmospheric, terrestrial and socioeconomic datasets.  
 
This deliverable provides a description of the CCFFDAS modelling framework, the applied 
QND methodology as well as the results obtained in task 3.5 ‘Perform QND experiments with 
an advanced data assimilation system (CCFFDAS) to establish inversion strategy’.  
 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

The main objectives of this deliverable are to  

• document the development of the quantitative network design framework around 
coupled models of the terrestrial and anthropogenic carbon fluxes, 

• describe the observations and the corresponding observation operators, 

• provide a set of network design experiments, and 

• present results of the network design experiments regarding the options for designing 
a prototype MVS capacity. 

 

2.2.2 Work performed in this deliverable 

After consultation with the partners involved within task T3.5, a summary of the work within 
T3.5 and the corresponding results has been compiled. 

 

2.2.3 Deviations and counter measures 

Not applicable. 
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3 Framework overview 

The CCFFDAS modelling framework is shown in Figure 1 highlighting the flow of information 
from the control vector (yellow oval, consisting of model process parameters and initial 
conditions in atmospheric CO2) to the observations (here denoted as blue ovals). 

 

Figure 1: Modelling framework with information flow in CCFFDAS. Boxes represent calculation 
steps by models, blue ovals observables, yellow oval the control vector (model parameters and 
initial condition), and red ovals surface fluxes (fossil emissions, terrestrial fluxes). 

 

Task 3.5 ‘Perform QND experiments with an advanced data assimilation system (CCFFDAS) 
to establish inversion strategy’ co-developed and applied a prototype carbon cycle-fossil fuel 
data assimilation system that combines the functionalities of the Fossil Fuel Data Assimilation 
System by Asefi-Najafabady et al. (2014) and the Carbon Cycle Data Assimilation System by 
Kaminski et al. (2017a). Substantial development work of the CCFFDAS employed here has 
been co-funded by the European Space Agency funded CCFFDAS (ESA-CCFFDAS) project. 
While the emphasis in the ESA-CCFFDAS project was on the different design options of the 
CO2M satellite, here the focus is on assessing the impact of different observation networks 
(in situ and satellite) and combinations thereof on the performance in terms of the posterior 
uncertainty quantification for the selected target quantities. The selected target quantities are 
the national emission totals per sector (i.e., for power generation and the ‘other’ sector, see 
Section 5.1) for the first week of June 2008 and for five countries: Australia, Brazil, China, 
Germany, and Poland. 
 
In the following sections we provide a short summary description of the Quantitative Network 
Design (QND) approach employed in this study (Section 4) as well as an overview of the 
individual models (Section 5.1 for the fossil fuel emissions model component and Section 5.2 
for the natural terrestrial CO2 fluxes model component). Detailed descriptions of the 
observations and observation operators are given in Section 6.  
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4 Quantitative Network Design Approach 

The QND formalism employed here is presented in detail by Kaminski and Rayner (2017); it 
is partly based on Tarantola (2005) and Rayner et al. (2016). We provide only a shortened 
form of the presentation by Kaminski and Rayner (2017a). 
 
QND performs a rigorous uncertainty propagation from the observations to a target quantity 
of interest relying on the indirect link from the observations to the target variables established 
by a numerical model. We distinguish between four sources of uncertainty in a model 
simulation:  
 

1. Uncertainty caused by the formulation of individual process representations and their 
numerical implementation (structural uncertainty).  

2. Uncertainty in constants / process parameters in the formulation of these processes 
(parametric uncertainty).  

3. Uncertainty in external forcing/boundary values, such as temperature or precipitation, 
driving the relevant processes (boundary value uncertainty). 

4. Uncertainty in the state of the system at the beginning of the simulation (initial state 
uncertainty).  

 
The first category reflects the implementation of the relevant processes in the model (code) 
while the others can be represented by a set of input quantities controlling the behaviour of a 
simulation using the given model implementation. The underlying assumption is that these 
different uncertainties are uncorrelated. The QND procedure formalises the selection of these 
input quantities through the definition of a control vector, 𝑥. The choice of the control vector is 
a subjective element in the QND procedure. A good choice covers all input quantities with high 
uncertainty and high impact on simulated equivalents of observations 𝑑mod or target quantities 

𝑦 (Kaminski et al., 2012; Rayner et al., 2016). 
 
A target quantity may be any quantity that can be extracted from a simulation with the 
underlying model, but also any component of the control vector. In the general case, where 
the target quantity is not part of the control vector, the QND procedure operates in two steps. 
The first step (inversion step) uses the observational information to reduce the uncertainty in 
the control vector, i.e. from a prior to a posterior state of information. The second step 
(prognostic step) propagates the posterior uncertainty forward to the simulated target quantity. 
 
Within the QND formalism, we represent all involved quantities by probability density functions 
(PDFs). We typically assume a Gaussian form for the prior control vector and the observations, 
if necessary after a suitable transformation. The covariance matrices of the Gaussian PDFs 
express the uncertainty in the respective quantities, i.e. 𝐶(𝑥0) and 𝐶(𝑑obs) for the prior control 
vector and the observations, respectively. In the context of these PDFs we will use the term 
uncertainty to refer to its full covariance matrix in the case of a vector quantity, and in the case 
of a scalar quantity or a given vector component it refers to the square root of the entry on the 
diagonal of the full covariance matrix corresponding to that particular vector component. In the 
latter case the uncertainty refers to one standard deviation of the marginal PDF corresponding 
to that component, and we use the notation σ(𝑑2) to denote, for example, the standard 

deviation of the second component of 𝑑. 
 

For the first QND step we use a mapping 𝑀 from control variables onto equivalents of the 
observations. In our notation the observation operators that map the model state onto the 
individual data streams (see Kaminski and Mathieu (2017) and Section Observations and 

observation operators6) are incorporated in 𝑀. 𝑀 is in practise computed by a specific 
numerical model with specific inputs and outputs. Let us first consider the case of a linear 
model, for which we denote by 𝐌′ the Jacobian matrix of 𝑀, i.e. the derivative of 𝑀 with respect 
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to 𝑥. In this case, the posterior control vector is described by a Gaussian PDF with uncertainty 
𝐶(𝑥), which is given by  
 

𝑪(𝑥)−1 = 𝐌′𝑇
𝐂(𝑑)−1𝐌′ + 𝑪(𝑥0)−1 ,     (1) 

 

where the data uncertainty 𝐶(𝑑) is the combination of two contributions: 
 

𝐶(𝑑) = 𝐶(𝑑obs) + 𝐶(𝑑mod).      (2) 
 
The term 𝐶(𝑑obs) expresses the uncertainty in the observations and  𝐶(𝑑mod) the uncertainty 
in the simulated equivalents of the observations 𝑀(𝑥). The first term in Equation (1) expresses 
the impact of the observations and the second term the impact of the prior information. In the 
non-linear case we use Equation (1) as an approximation of 𝐶(𝑥). 
 
The mapping 𝑁 involved in the second step is the mapping from the control vector onto a 
target quantity, 𝑦. The Jacobian matrix 𝐍′ of the mapping 𝑁 is employed to approximate the 

propagation of the posterior uncertainty in the control vector 𝐶(𝑥) forward to the uncertainty in 
a target quantity, σ(𝑦) via 
 

σ(𝑦)2 = 𝐍′𝐶(𝑥)𝐍′𝑇
+ σ(𝑦mod)2 .    (3) 

 
If the model were perfect, σ(𝑦mod) would be zero. In contrast, if the control variables were 

perfectly known, the first term on the right-hand side would be zero. The terms 𝐶(𝑑mod) in 
Equation (2) and σ(𝑦mod) in Equation (3) capture the structural uncertainty as well as the 
uncertainty in those process parameters, boundary and initial values that are not included in 
the control vector. These two terms typically rely on subjective estimates. When comparing 
the effect of different data sets in the same setup, σ(𝑦mod) acts as an offset (for the respective 
variance) in Equation (3). As the focus in the present study is on an assessment of data 
products rather than on the performance of the components in our modelling chain, we ignore 
σ(𝑦mod). 
 
To conduct a valuable QND assessment, the requirement on the model is not that it simulates 
the target quantities and observations under investigation realistically, but rather that it 
provides a realistic sensitivity of the target quantities and observations under investigation with 
respect to a change in the control vector. (As a hypothetical example we can think of a perfect 
regional tracer model that is run with an offset in the initial or boundary conditions for a passive 
tracer. The simulated tracer concentration will carry this offset, but all sensitivities will be 
perfect.)  
 
We note that (through Equation (1) and Equation (3)) the posterior target uncertainty solely 
depends on the prior and data uncertainties, the contribution of the model error to the 

uncertainty in the simulated target variable, σ(𝑦mod), as well as the observational and target 
Jacobians (quantifying the linearised model responses of the simulated observation equivalent 
and of the target quantities). Hence, the QND formalism can be employed to evaluate 
hypothetical candidate networks. Candidate networks are characterised by observational data 
type, location, sampling frequency and time, and data uncertainty but not the observational 
value. Here, we define a network as the complete set of the characterisation of observations, 
𝑑, used to constrain the model. The term network is not meant to imply that the observations 
are of the same type or that their sampling is coordinated. For example, a network can 
combine different types of in situ and satellite observations. In fact, one of our assessments 
deals exactly with this case: It combines XCO2 observed from space with in situ observations 
of atmospheric CO2, while all our other assessments evaluate either XCO2 or in situ 
observations. 
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Our inverse problem is characterised by a high-dimensional control vector combined with an 
observation vector of even larger dimension. As a consequence, the size of 𝐌′ is too large to 
solve Equation (1) on powerful desktop computers. Hence, as Rödenbeck (2005), we restrict 
ourselves to computing posterior uncertainties for a number of selected target quantities. For 
a given target quantity with target Jacobian 𝐍′ we iteratively solve Equation (4) for the target 

𝑧: 
 

𝐍′𝑇
= 𝐶(𝑥)−1𝑧 .       (4) 

 
Combining this with Equation (3) yields: 
 

σ(𝑦)2 = 𝐍′𝑧 .        (5) 
 

The Jacobians are computed by automatic differentiation of the model code with the software 
tool TAPENADE (Hascoët and Pascual, 2013). The observational Jacobian 𝐌’ is of the 
dimension of the control vector times the dimension of the set of all observations, which varies 
from experiment to experiment. Both dimensions are high. For example in the case of a single 
CO2M satellite with only nadir view observations together with nightlights and sectorial 
national totals the dimension of the observation vector is above 1.6 million. The dimension of 
the control vector is about 1.6 million, mainly due to the gridcell-dependent parameters for the 
other sector emissions on the high-resolution 0.1 degree grid. The matrix 𝐌’ thus has more 

than 1012 entries. To enhance the numerical efficiency we exploit the sparsity of 𝐌’, and restrict 
the calculation of 𝐌’ to non-zero elements. In particular we exploit that fact that the submatrix 
relating the per capita gross domestic product (GDP) to the nightlights (both of dimension of 
about 1.5 million) has a diagonal structure. 
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5 Description of individual models 

5.1 Description of the fossil fuel emissions model 

The underlying model for the fossil fuel CO2 emissions is based on Asefi-Najafabady et al. 
(2014) using a sectorial approach. We define two sectors here: a power generation sector and 
all other emissions denoted as the “other” sector. Following the Kaya identity (Nakicenovic, 

2004) the emissions 𝐹 from the other sector at a point 𝑥 in country 𝑐 are given by 
 

𝐹(𝑥, 𝑐) = 𝑝𝑃(𝑥)𝑔(𝑥)𝑒𝑓(𝑐)      (6) 
 
where 𝑝 is a scalar multiplier for the population density, 𝑃 is the population density, 𝑔 is the 

per capita GDP, 𝑒 is the energy intensity of the economy and 𝑓 is the fossil carbon intensity of 
energy. Here, lower case variables denote elements of the control vector (see Table 1). In 
summary, these are a scalar multiplier for the population density (𝑝), a pointwise estimate of 

the per capita GDP (𝑔(𝑥)), a global constant for the energy intensity of the economy (𝑒), and 
a country-wise estimate for the carbon intensity of energy production (𝑓(𝑐)). For the carbon 

intensity we apply an uncertainty of 10 times its prior value (denoted as 𝑓0 in Table 1) with a 

floor value of 10−6 kgC/MJ. 𝑃(𝑥) is the population density. The population dataset we use is 
the gridded population density provided by the LandScan Global Population Database 
(available at www.geospatial.com). The data set represents population density at 0.00833 × 
0.00833 degrees grid resolution for the year 2008 (Bhaduri et al., 2007). The population 
density is then aggregated to the 0.1 degree resolution used here. 

 
Figure 2: Emission rates (black) and their relative uncertainty (red) for the power plants in China. 
Relative uncertainties above 1000% are show as 1000%. 

 

For the power generation sector we use the emissions from a list of power plants in each 
country. As in Asefi-Najafabady et al. (2014) emissions associated with each power plant were 
mapped onto the FFDAS grid based on the power plant location. If power plants were located 
inside a grid cell, the grid cell was given the emission value with no subgrid cell spatial 
distribution. When location information was not available for a power plant, the power plant 
emissions were proportionally distributed to the rest of the grid cells containing power plants 
in that country. Control variables in the power generation sector are the emissions from each 
listed power station (see Table 1). These emissions are obtained from the so-called CARMA 
database (see http://carma.org). Uncertainties on these power plant emissions are estimated 
from the average of the reported standard error from plants listed in the US Energy Information 
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Administration and/or the US EPA Clean Air Market datasets. For a detailed description of the 
emission and emission uncertainty estimates from the world's power plants we refer to the 
supporting material of Asefi-Najafabady et al. (2014).  
 
We use a floor value of 0.01 MtC for the prior uncertainty of an individual power plant to ensure 
that smaller power plants, which may have large relative emission uncertainties, are 
accounted for in the optimization. This results in relative prior uncertainties well above 100% 
for small power plants. As an example, Figure 2 shows emission rates and their relative 
uncertainty for the power plants in China. Using this procedure, the prior uncertainties 
aggregated to country-scale were below our assumed uncertainty for the International Energy 
Agency (IEA) national totals (IEA, 2011) for four countries (China, India, South-Africa, and 
USA). In contrast to Asefi-Najafabady et al. (2014), in each of these four countries the prior 
uncertainty for each of the power plants was upscaled such as to match the uncertainty in the 
national total.  
 

Table 1: List of control variables for the fossil fuel emissions model. 

Description Symbol Resolution Prior Uncertainty 

Per capita GDP g gridcell 1,25 dollar/yr/person 

Energy intensity e global 10-6 MJ/dollar 

Carbon intensity f country max(10f0, 10-6 kgC/MJ) 

Population density 
scaling 

p global 10-6 

Nightlight scaling n global see Equation (11) 

Power plant emissions 
(CARMA) 

u individual power plants see Section 5.1 

 

For both the power generation and the other sector, prior values of the control variables in this 
study are selected such that they are consistent with the IEA and the nightlights observations. 

The corresponding sectorial fluxes for Europe are shown in Figure 3. 

 

 

Figure 3: Fossil fuel emissions for 2008 as calculated by FFDAS for the 'other' (left panel) and 
the electricity generation sector (right panel). 
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5.2 Description of the terrestrial biosphere carbon flux model 

 

Figure 4: Plant functional type groupings by land cover classes: cropland/urban/natural 
vegetation mosaic, needle-leaf forest, broadleaf forest, mixed forest, shrubland, savanna, 
tundra, and barren/sparsely vegetated. 

 

The terrestrial biosphere model we used to calculate the natural terrestrial CO2 exchange 
fluxes is conceptionally similar to the one used by Kaminski et al. (2002) and based on Knorr 
and Heimann (1995). The model was previously employed for assimilation of XCO2 (Kaminski 
et al., 2017a). It operates on a 0.5 degree global grid and divides the global terrestrial 
biosphere into 8 land cover classes (in the following also referred to as Plant Functional Types, 
PFTs) based on the MODIS land cover classification (Friedl et al., 2010), see Figure 4: 
 

- cropland/urban/natural vegetation mosaic, 
- needleleaf forest, 
- broadleaf forest, 
- mixed forest, 
- shrubland, 
- savanna or grassland, 
- tundra, 
- barren or sparsely vegetated.  

 
The model calculates the uptake of CO2 by photosynthesis (expressed as Net Primary 
Productivity, NPP) using the so-called light-use efficiency approach: 
 

NPP(𝑥, 𝑡) = ϵ ⋅ α(𝑥, 𝑡) ⋅ FAPAR(𝑥, 𝑡) ⋅ srad(𝑥, 𝑡)   (7) 
 
where ϵ denotes the PFT-specific parameter for light use efficiency, α a water stress factor, 

FAPAR the fraction of absorbed photosynthetically active radiation, and srad the incident solar 
radiation driving photosynthesis. 
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Heterotrophic respiration Rhet is calculated following a 𝑄10 functional relationship with 
temperature 𝑇 and is, as the photosynthesis calculation, modulated by the water stress factor: 
 

Rhet(𝑥, 𝑡) = 𝑛(𝑥) ⋅ α(𝑥, 𝑡) ⋅ 𝑄10
𝑇/10

     (8) 

 
The PFT-specific parameter 𝑄10 expresses the ratio of respiration at T + 10 to that at T, with 
T measured in °C. The control variables for the terrestrial biosphere model component are the 
parameters ϵ and 𝑄10 (see Table 2). The spatially varying normalisation factor 𝑛(𝑥) is the ratio 
of the temporal integrals of NPP(𝑥, 𝑡) and Rhet(𝑥, 𝑡) computed for prior parameter values over 
the entire model simulation period from 2004 to 2008. The normalisation factor thus ensures 
a balanced prior biosphere over the model simulation period but allows for non-zero posterior 
net flux. This is different from the study by Kaminski et al. (2002) which assimilated the 
observed seasonal cycle and enforced an annually balanced posterior biosphere.  
 
In summary, the model uses as driving data global fields of temperature, FAPAR, and the 
water stress factor. The temperature fields are taken from the CRU data set (Harris et al., 
2014) and the plant water-stress factor, taken as monthly climatological AET/PET (actual 
divided by potential evapotranspiration) values per grid-cell, is computed with the BETHY 
model of Knorr (2000) for the years 1989 to 2012 using the same CRU data set to provide 
meteorological input data for BETHY. We use the FAPAR product (Pinty et al., 2011) derived 
with JRC-TIP (Pinty et al., 2007) directly on the 0.5 degree model grid, to avoid significant 
errors which would be imposed by spatial aggregation of the FAPAR product derived on a 
finer grid; for details we refer to Kaminski et al. (2017b).  
 

Table 2: List of control variables for the terrestrial biosphere fluxes model. 

Description Symbol Resolution Prior Uncertainty 

Light use efficiency  PFT 100% of prior 

Respiration relation to temperature Q10 PFT 100% of prior 

 

The values for the prior model parameters (ϵ and 𝑄10) have been selected such that they are 
consistent with XCO2 observations obtained from GOSAT (Kaminski et al., 2017a). 
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6 Observations and observation operators 

The observation operator needed in data assimilation translates model state information to 
observational variables. In the following subsections we describe the observations and the 
corresponding observation operators in our CCFFDAS modelling framework. 

 

6.1 IEA national totals 

On an annual scale, national total fossil fuel CO2 emissions are key observations for 
constraining the simulated fossil fuel emissions. The data are provided by IEA (IEA, 2011). 
IEA estimates CO2 emissions from fossil fuel combustion using energy surveys for 137 
individual countries and 3 country aggregates (a collection of smaller countries in Asia, Africa, 
and Latin America). 
 
In addition to national totals, the IEA emissions are divided into (sub-)sectors. For our 
purposes here, we aggregate the sectorial emissions into two sectors according to our fossil 
fuel emissions model: The first sector is the power generation sector and includes all power-
producing facilities including both grid-connected and 'autoproducers' facilities (generation of 
electricity for internal use not connected to the grid). We call the second sector the 'other' 
sector, which encompasses all other emitting categories (including industrial, residential, 
commercial, and transportation emissions). 
 
IEA does not, unfortunately, supply any uncertainties on the emission estimates. In contrast 
to Asefi-Najafabady et al. (2014) we use the following approach to provide a transparent 
assignment of national total emissions uncertainties based on Marland (2008): We group the 
world's countries according to the United Nations Framework Convention on Climate Change 
(UNFCCC) Classification of Parties (countries) by the Annex, i.e. Annex I, Annex II and Non-
Annex I countries (UNFCCC, 1992). We consider Annex II countries as countries with 'well-
developed energy statistics and inventories' and assign these countries an uncertainty of 5% 
of the total emissions (at the 95% confidence level). For the purpose of assigning national total 
emissions uncertainty we consider Turkey, Monaco, and Liechtenstein as Annex II countries. 
Annex I countries that do not belong to the Annex II classification are classified as 
industrialised (developed) countries and assigned an uncertainty of 10% of the total emissions 
(at the 95% confidence level). All other countries, i.e. Non-Annex I countries, are assigned an 
uncertainty of 20% of the total emissions (at the 95% confidence level). Figure 5 shows a map 
of the country classification. The percentage values above are divided by 2 to represent a 1 
sigma relative uncertainty of the sum over both sectors. To distribute the total uncertainty 
between the two sectors, we first compute the fraction of each sector's emissions of the total 
emission, and then compute the sectorial uncertainty by multiplying the square root of that 
fraction with the total uncertainty. This procedure ensures that the computed variances (i.e. 
squares of standard deviation) for both sectors add up to the total variance. 
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Figure 5: World map showing the UNFCCC country classification. Note that for the purpose of 
assigning national total emissions uncertainty we consider Turkey, Monaco, and Liechtenstein 
as Annex II countries and display them as such. 

 

There are two observation operators associated with the IEA national emissions observations, 
one for each of the two sectors. We first describe the observation operator for the power 
generation sector and then the operator for the other sector. 
 
Since the control variables for the power generation sector are the individual power plant 
emissions 𝑢(𝑖) (see Section 5.1 above) with index 𝑖 representing an individual power plant 
and the observations are national total emissions for power generation 𝑈(𝑐) in a given country 

𝑐, the power plant contribution to the observation operator is the sum of the emissions 
generated by the power plants located in the country 𝑐: 
 

𝑂elec = ∑ 𝑢(𝑖)𝑖∈𝑐 .       (9) 
 
The observation operator for the other sector is essentially the Kaya identity (Nakicenovic, 
2004) relating fossil fuel CO2 emissions to population density 𝑃, per capita GDP 𝑔, energy 

intensity of the economy 𝑒 and the fossil carbon intensity of energy 𝑓. Here, population density 
𝑃, per capita GDP 𝑔 and carbon intensity of energy 𝑓 are spatially explicit variables, whereas 

𝑃(𝑥) and 𝑔(𝑥) are gridcell-dependent and 𝑓(𝑐) is country-dependent. 𝑥 denotes a 0.1 by 0.1 
degrees gridcell and 𝑐 a country. 𝑒 is assumed to be a global constant. Because the IEA 
observations for the other sector are also national totals, the observation operator is the 

aggregated sum of the Kaya identity for the country 𝑐:  
 

𝑂other = ∑ 𝐴(𝑥)𝑝𝑃(𝑥)𝑔(𝑥)𝑒𝑓(𝑐)𝑥∈𝑐       (10) 
 
where 𝐴(𝑥) is the area of gridcell 𝑥 and 𝑝 a scalar multiplier for the population density. The 

parameters 𝑝, 𝑔(𝑥), 𝑒 and 𝑓(𝑐) are all control variables to be constrained by observations. 
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6.2 Nightlights 

We use nightlights as an additional observation to constrain the fossil fuel emissions model. 
The Defense Meteorological Satellite Program (DMSP) operates the Operational Linescan 
System (OLS) that records low-light imaging data at night worldwide. The data are archived 
by the US National Oceanic and Atmospheric Administration at the National Geophysical Data 
Center (NGDC) (http://ngdc.noaa.gov/eog/index.html). At NGDC a set of procedures were 
developed to obtain a stable intercalibrated nightlights product covering several years (Ziskin 
et al., 2010). A total of six products were produced for the years 1997, 1999, 2000, 2003, 
2004, 2006, and 2010. Using this product, we applied a linear interpolation to obtain nighttime 
lights for 2008. 
 
Uncertainties in the nightlight observations arise from errors in the instrument as well as from 
aggregating the native 30" observation to the 0.1 degree grid used here. To estimate these 
uncertainties we use the same approach as in Asefi-Najafabady et al. (2014), given by  
 

σNL = (0.5 + 0.1𝑥NL)1.25      (11) 
 
where 𝑥NL is the observed nightlight value. The uncertainty is inflated by 25% (the factor 1.25 
in Equation (11)) to take errors in the temporal interpolation into account.  
 
The observation operator for nightlights relates the product of per capita GDP 𝑔(𝑥), population 

density 𝑃(𝑥) and its scaling factor 𝑝 to the nightlight observation by multiplying it with a 
normalisation factor 𝑛, which also accounts for the conversion of units from GDP to nightlight 
digital number: 
 

𝑂NL = 𝑛𝑝𝑃(𝑥)𝑔(𝑥).       (12) 
 
𝑛 is a global constant and part of the control vector, i.e. we solve for it in the optimisation (as 
is done for 𝑝 as mentioned above). 

 

6.3 Atmospheric CO2 

6.3.1 CO2M 

The study makes use of error data files that characterise the uncertainty of a hypothetical L3 
product from the CO2 Monitoring mission (CO2M) with 0.5 degree spatial and daily temporal 
resolution. These were produced by the IUP, University of Bremen within the ESA-CCFFDAS 
project. In brief, the L3e data files have been generated from corresponding “Level 2 error 
files” (L2e files) and corresponding Error Parameterization (EP) formulas (EPFs). The 
theoretical background is described by Buchwitz et al. (2013). The L2e files contain detailed 
information for each individual satellite footprint (ground pixel) such as time and location and 
all parameters needed to compute random and systematic XCO2 retrieval errors such as solar 
zenith angle, surface albedo, cirrus optical depth, etc., via the EPFs. The L2e files were 
generated for a single sounding precision of 0.7 ppm.  
 
The conversion of the L2e files into L3e files has been done by “gridding”, i.e., (typically) by 
averaging the relevant values of all the individual footprints (of a given satellite) contained in 
a 0.5 degree grid cell for a given day. 
 
Here we make use of two scenarios: a scenario with one satellite and a scenario with a 
constellation of four satellites flying in the same orbit but shifted in time.  
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Figure 6: Spatial coverage for one day (1st of June 2008) of one (left) and four (right) hypothetical 
CO2M satellites (quality flagged, swath 250 km). The quantity shown is the XCO2 systematic 
error corresponding to each grid cell in ppm. 

 

Note that “orbit” is the near-circular path of the satellites in space and because of the Earth 
rotation during the movement of the satellites this implies that different airmasses are 
observed by a constellation of four satellites. As a consequence, daily coverage is improved 
as the additional satellites fill the gap between the one satellite orbit, see Figure 6. All the 
above data files were produced for a swath width of 250 km.  
 
Each data file provides observational uncertainty data sets for satellite ground pixels over land 
with corresponding errors computed with the “nadir EPF”.  
 
The observation operator for the XCO2 atmospheric column observations used in this study 
is the global atmospheric transport model TM3 (Heimann and Körner, 2003), operated on its 
fine grid, i.e. with approximately 4 by 5 degrees horizontal resolution on 19 vertical levels. The 
model is approximated by a Jacobian that resolves monthly flux impacts in the same month 
as the observation and up to three months before an observation on the full model grid. 
Monthly flux impacts between four and 47 months before an observation are assumed to be 
uniform within a set of twelve latitudinal bands, each about 16 degree wide. For fluxes more 
than 47 months before an observation, we use a globally uniform response. This 
approximation is described in detail by Kaminski et al. (2010), with the exception that here we 
use 12 latitude bands instead of 8. The model is run for the years 2004 to 2008 (the year that 
our L3e files are representing) with meteorological driving fields taken from the NCEP 
reanalysis (Kalnay et al., 1996). The column-averaged CO2 were sampled from the model to 
correspond to the daily XCO2 observation equivalent of CO2M in our assimilation framework. 
 
For the QND experiments the uncertainty of the atmospheric XCO2 provided by the 
hypothetical L3 product must be aggregated to the 4 by 5 degrees horizontal resolution of the 
observation operator. We explore three different ways of aggregation. Throughout all 
experiments the random error at the native 0.5 degree resolution is treated as uncorrelated in 
space and time. In the default experimental setup, we do the same for the systematic error 
(Equation (13)). 
 

σtm2 = (
1

𝑛
)

2
∑ 𝑅𝐸0.5

2 + (
1

𝑛
)

2
∑ 𝑆𝐸0.5

2      (13) 
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Figure 7: Ranges of systematic error of nadir view observed XCO2 from the hypothetical L3 
product provided on a 0.5 degree grid. TM3 grid-cells with a resolution of around 4-by-5 

degrees are illustrated by gridlines. 

 

 

Figure 8: Ranges of systematic error of nadir view observed XCO2 from the hypothetical L3 
product provided on a 0.5 degree grid focused over Europe. TM3 grid-cells with a resolution of 

around 4-by-5 degrees are illustrated by gridlines. 
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As an alternative aggregation procedure, Equation (14) shows the formalism when the 
systematic error is assumed to be correlated: 
 

σtm2 = (
1

𝑛
)

2
∑ 𝑅𝐸0.5

2 + (
𝑛𝑒𝑝𝑠

𝑛
)

2
∑ 𝑆𝐸0.5,eps

2 + (
𝑛+

𝑛
)

2
SE0.5,+

2
+ (

𝑛−

𝑛
)

2
SE0.5,-

2
 (14) 

 
For this purpose we divide the systematic uncertainty into three independent subsets. The first 
subset is composed of all 0.5 degree grid cells with systematic uncertainty in the interval (-
0.05 ppm, 0.05 ppm). The second (third) subset is composed of all 0.5 degree grid cells with 
systematic uncertainty above 0.05 ppm (below -0.05 ppm). The numbers of 0.5 grid cells in 

these three subsets are respectively denoted by 𝑛eps, 𝑛+, 𝑛−, and the total number of grid cells 

as 𝑛. An illustration of the global distribution of the three groups is provided by Figure 7, and 
a zoom over Europe in Figure 8. In Equation (14) we assume that the systematic uncertainty 
within the first subset is uncorrelated, while we assume complete correlation within each of 
the other two subsets. 
 

 

Figure 9: Daily mean of XCO2 simulated by ECMWF model for two days (left: 1st June; right: 7th 
June) in 2015 . 

 

In an extreme case the aggregation into a TM grid cell may be based on only one single 0.5 
degree grid cell. The aggregated product may then not represent the average over the TM 
grid cell particularly well. To approximate the uncertainty imposed by such representation 
errors, we use a third version for aggregation, which is based on Eq. 15 of Kaminski et al. 
(2010): 
 

σtm2 = (
1

𝑛
)

2
∑ 𝑅𝐸0.5

2 + (
1

𝑛
)

2
∑ 𝑆𝐸0.5

2 +
1

𝑛
∑ σhet

2      (15) 

 

σhet quantifies the heterogeneity, which we approximate as follows. We used a high-resolution 
simulation by the ECMWF model (Agustí-Panareda et al., 2019) and aggregated its daily mean 
XCO2 output (Figure 9) to the 0.5 degree grid of our XCO2 data. Within any given TM grid 

cell, σhet was then computed as the variance in XCO2 over all covered 0.5 degree grid cells. 
Illustrations of the XCO2 uncertainties aggregated to the TM grid for a particular day in the 
first week of June and the three described aggregation methods are given in Figure 10. 
 
For our assessments of multi-satellite configurations, we first apply the aggregation procedure 
for each satellite separately and use the resulting data sets as separate constraints. Similarly, 
we treat retrievals over land and ocean as separate constraints. 
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Figure 10: Overall uncertainty of nadir view observed atmospheric XCO2 for June 1st 2008 
aggregated to TM grid by applying the aggregation formula from Equation (13) (top), Equation 
(14) (middle), and Equation (15) (bottom). 
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6.3.2 In situ CO2 

In our experiments, we compare the impact of XCO2 data with that of networks of in situ 
observations of atmospheric CO2 (15 and 141 sites, see Figure 11). The 15-sites network 
samples essentially background air with the sites being located in remote areas. The larger 
141-sites network represents the NOAA greenhouse gas flask sampling network 
(https://www.esrl.noaa.gov/gmd/ccgg/flask.php). We assume the network is equipped with 
continuous analysers, such that a daily mean value is available without any gaps. Throughout 
the network we use an uncertainty of 1 ppm for the daily means, reflecting the combined 
uncertainties in the observations and the model. We regard this as an optimistic choice: While 
the uncertainty for an hourly observation is typically assumed in the order of 0.3 ppm 
(Rödenbeck, 2005), our capability to simulate point measurements is limited. As an indication 
Table 3 provides the variability of hourly observations, which shows a maximum value of over 
12 ppm for the Hegyhatsal tower (HUN) in Hungary. 
 

 

Figure 11: 15-sites (left) and 141-sites (right) network providing daily in situ observations. 

 
The observation operator for the continuous network is identical to the one for XCO2 described 
in the previous section, except for the fact that here we sample the daily mean at the grid cell 
and vertical model transport layer in which the respective site is located, rather than computing 
a column average. 
 
 

Table 3: Average, minimum, and maximum of daily standard deviation computed from 
observed hourly CO2 concentrations (in ppm) for the first week in June for eight sites. 

Site Latitude Longitude mean min max 

Alert, Canada 82.45 N 62.15 W 0.22 0.06 0.31 

Amsterdam Island, Indian Ocean 37.8 S 77.54 E 0.26 0.12 0.44 

Baring Head, New Zealand 41.41 S 174.87 E 1.64 0.68 2.89 

Hegyhatsal, Hungary 46.95 N 16.65 E 10.64 7.55 12.9 

Izana, Tenerife 28.31 N 16.5 W 0.63 0.37 1.01 

Mace Head, Ireland 53.33 N 9.9 W 0.38 0.31 0.54 

Mauna Loa, Hawaii 19.54 N 155.58 W 0.32 0.11 0.55 

Pallas, Finland 67.97 N 24.12 E 1.08 0.47 2.28 

 

 

6.3.3 Radiocarbon 

Finally, we include experiments showing the potential constraints from in situ networks 
measuring radiocarbon (14CO2). For simplicity we assume here that radiocarbon is a perfect 
tracer of fossil fuel combustion-derived CO2 with no uncertainties from e.g. nuclear power plant 
emissions or isotope disequilibrium fluxes from soils and the oceans. Moreover, we assume 
that the radiocarbon observations are co-located with the in situ CO2 measurements to 
compare these different observations. The experiment considers an ideal scenario where 



C0
2 
HUMAN EMISSIONS 2020  

 

D3.6 Inversion strategy based on joint QND assessments 26 

continuous radiocarbon observations are available daily with an uncertainty of 1 ppm in fossil 
fuel CO2, which is equivalent to about 2 permille uncertainty in Δ14CO2. 
 
The observation operator for radiocarbon is identical to the one for in situ CO2 except that the 
radiocarbon observations do not have any sensitivity to the biogenic fluxes. 
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7 Experiments 

Table 4: List of experiments; ffCO2 = fossil fuel CO2; EG = electricity generation sector. 

Exp # Observations Error Comment 

0 - - Prior 

1 1 satellite 0.7 ppm 
Default, nadir view, uncorrelated 
systematic error 

2 1 satellite 0.7 ppm 
Nadir view, correlated systematic 
error 

3 1 satellite 0.7 ppm 
Nadir view, uncorrelated systematic 
error, including representation error 

4 1 satellite 0.7 ppm 
Nadir view, uncorrelated systematic 
error, 10 times larger prior error for 
EG 

5 1 satellite 0.7 ppm 
Nadir view, uncorrelated systematic 
error, including national totals as 
observations 

6 4 satellites 0.7 ppm 
Nadir view, uncorrelated systematic 
error 

7 1 satellite + in situ 15 sites 0.7 ppm, 1 ppm 
Nadir view, uncorrelated systematic 
error 

8 In situ 15 sites 1 ppm  

9 In situ 15 sites 0.5 ppm  

10 In situ 15 sites with radiocarbon 
1 ppm for CO2 and 
ffCO2 (radiocarbon) 

 

11 In situ 141 sites 1 ppm  

12 In situ 141 sites with radiocarbon 
1 ppm for CO2 and 
ffCO2 (radiocarbon) 

 

 

Table 4 provides an overview on the experiments that we conducted. Experiments 1–6 
constitute experiments assessing the impact of satellite observations only, while experiments 
8–12 constitute experiments assessing the impact of in situ observations (both CO2 and 14CO2) 
only, and experiment 7 assesses the impact of satellite and in situ observations in 
combination. 
 
Our experimental setup is such that we have defined a default experiment through the choice 
of several factors and based on this default then defined a number of further experiments, in 
each of which (with a few exceptions) only one of these impact factors is changed. 
 
Regarding the XCO2 observations, our default configuration (Experiment 1 in Table 4) uses 
data for the first week of June provided by 
 

• one satellite, 

• with 250 km swath width, 

• and the nadir view XCO2 data set based on retrievals over land, 

• and on a single sounding accuracy of 0.7 ppm (see Section 6.3.1), 

• which is aggregated to the model grid assuming spatially and temporally uncorrelated 
systematic errors, and 

• ignores representation errors. 
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Experiment 2 explores the effect of correlations in the systematic errors of the XCO2 retrievals. 
Clearly, the representation error depends on the resolution of our transport model. To minimise 
this model-specific impact on our default experiment, we have by default not included it in the 
experiments but explore the effect of representation error in a specific sensitivity experiment 
(Experiment 3). Experiment 4 explores the effect of increasing the prior uncertainty for the 
energy sector by a factor of 10 with respect to the default experiment. The FFDAS of Asefi-
Najafabady et al. (2014) has an annual time step, i.e. the system is operated with a fixed 
temporal emission profile at each grid cell and for each power plant. In order to relax this 
assumption, our default experiment restricts the temporal domain (assimilation window) to one 
week (the first week of June 2008), i.e. we are using atmospheric observations over that week 
to constrain the emission rates over that week. As the national inventories (Section 6.1) are 
only available on annual scale, the default experiment excludes them from the list of 
observations to be used to constrain the control vector. Experiment 5 addresses the 
hypothetical case of availability of national total emission rates on the weekly scale. Since the 
weekly emission rate uncertainties are not known, we assume the same emission rate 
uncertainty as on the annual scale applies.  Experiment 6 increases the number of satellites 
to 4. Experiment 7 combines XCO2 with in situ CO2 observations provided by the 15-sites 
atmospheric network (see Section 6.3.2), while Experiment 8 evaluates the 15-sites in situ 
CO2 observations alone with our default uncertainty of 1 ppm. To test the impact of the 
observational in situ uncertainty we perform an experiment with the 15-site network but a 
reduced 0.5 ppm uncertainty (Experiment 9). Experiment 11 increase the size of the in situ 
network to 141 sites and Experiments 10 and 12 include radiocarbon measurements at the in 
situ sites of the two respective networks. 
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8 Results 

We focus on the posterior uncertainties in national total emission rates during the first week of 
June 2008 for the two fossil fuel emissions sectors and five target countries. Tables 5 and 6 
show the uncertainties in national emission rates for all experiments (see Section 7 and Table 
4) for the electricity generation and ‘other’ sector, respectively. As a comparison, the first rows 
of the tables also list the national total emission rates (not uncertainty) for each target during 
this time period, assuming that the annual emissions are evenly distributed throughout the 
year. The second rows show the prior uncertainties before assimilating observations. Note 
that the prior uncertainties for the other sector are roughly ten times the national emission 
rates due to the specification of the prior uncertainty in the carbon intensity parameter (see 
Table 1: List of control variables for the fossil fuel emissions model.). 
 

Table 5: Posterior uncertainty in emission rates (MtC/yr) for the electricity generation sector 
during the first week of June 2008. The first row (National total) shows actual emission rates 

(MtC/yr) instead of posterior uncertainties. EG = electricity generation sector. 

Exp # Description Australia Brazil China Germany Poland 

- National total 60.0 11.2 855.2 92.0 43.2 

0 Prior 14.7 9.1 123.5 22.6 11.9 

1 Default, 1 satellite 14.1 9.0 115.7 22.6 11.9 

2 1 satellite, correlated systematic error 14.5 9.0 119.9 22.6 11.9 

3 1 satellite, representation error 14.4 9.1 119.3 22.6 11.9 

4 1 satellite, inflated prior for EG 114.6 82.7 221.4 220.5 114.3 

5 1 satellite + national totals 2.0 3.1 74.9 3.4 2.7 

6 4 satellites 13.4 8.9 108.0 22.5 11.9 

7 1 satellite + in situ 15 sites 14.1 9.0 115.7 22.6 11.9 

8 In situ 15 sites 14.7 9.1 123.5 22.6 11.9 

9 In situ 15 sites, 0.5 ppm uncertainty 14.7 9.1 123.5 22.6 11.9 

10 In situ 15 sites with radiocarbon 14.7 9.1 123.5 22.6 11.9 

11 In situ 141 sites 14.7 9.1 123.3 22.6 11.9 

12 In situ 141 sites with radiocarbon 14.7 9.1 123.3 22.6 11.9 

 

The uncertainty reductions in emission rates from the electricity generation sector are 
generally small. In the optimistic experiment with 4 satellites (experiment 6), the emission rate 
uncertainties are reduced relative to the prior uncertainty by 12.6% for China, 8.8% for 
Australia, 2.2% for Brazil, and less than 1% for Germany and Poland. The surface in situ 
network has a negligible impact on the emission rate uncertainties. These small uncertainty 
reductions could be due to high confidence in the prior compared with other components of 
the modelling chain, which would leave little room for optimisation for the electricity generation 
sector, or be due to low sensitivity of the observational networks to the emissions from the 
electricity generation sector. To test for the first possibility, we inflated the prior uncertainties 
for the electricity generation sector by a factor of ten to make them comparable to the prior 
uncertainties for the other section (Error! Reference source not found.), and then ran the 
QND experiment again using the default experiment with one satellite (experiment 1). Keeping 
in mind that the prior uncertainties are ten times larger than the default prior values in the 
second row of Error! Reference source not found., the relative uncertainty reductions 
relative to the prior for the electricity generation emission rates with one satellite are now 
82.1% for China, 22.0% for Australia, 9.1% for Brazil, 3.9% for Poland, and 2.4% for Germany. 
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Thus, in the case of large prior uncertainty of the emissions from the electricity generation 
sector, the satellite observations are able to provide useful constraints (smaller uncertainties 
than the national total emissions) on weekly national emissions for countries with large power 
plants like China. 
 

Table 6: Posterior uncertainty in emission rates (MtC/yr) for the other sector during the first 
week of June 2008. The first row (National total) shows actual emission rates (MtC/yr) instead 

of posterior uncertainties. EG = electricity generation sector. 

Exp # Description Australia Brazil China Germany Poland 

- National total 47.2 87.3 927.2 127.2 38.1 

0 Prior 472.3 873.1 9272.0 1271.7 381.0 

1 Default, 1 satellite 15.7 21.8 179.6 50.6 19.7 

2 1 satellite, correlated systematic error 36.0 25.1 248.5 97.0 23.2 

3 1 satellite, representation error 18.5 35.7 244.8 71.0 32.2 

4 1 satellite, inflated prior for EG 102.2 89.9 286.7 280.7 138.6 

5 1 satellite + national totals 1.8 8.3 96.0 4.0 2.7 

6 4 satellites 13.2 15.1 124.5 41.2 17.2 

7 1 satellite + in situ 15 sites 15.7 21.8 179.6 49.7 19.5 

8 In situ 15 sites 472.3 873.1 9270.9 636.8 245.5 

9 In situ 15 sites, 0.5 ppm uncertainty 472.2 873.1 9268.6 558.2 223.3 

10 In situ 15 sites with radiocarbon 472.2 873.1 9268.6 584.4 212.2 

11 In situ 141 sites 357.5 619.4 562.1 196.4 163.3 

12 In situ 141 sites with radiocarbon 299.0 457.5 475.3 156.7 121.0 

 

If information about the weekly emission rates was available independently form our emissions 
data base, for example collected from bottom-up inventories of national totals, this information 
could be treated as an additional data stream and assimilated into CCFFDAS. Experiment 5 
illustrates such a case where both satellite observations and independent information about 
the national total emissions from the electricity generation sector are used to constrain 
emission rates, using the same prior uncertainties as the default experiment without inflation. 
In this case, there are substantial uncertainty reductions relative to the prior in the electricity 
generation sector across all target countries: 86.4% for Australia, 85.0% for Germany, 77.3% 
for Poland, 65.9% for Brazil, and 39.4% for China. The uncertainty reductions in Brazil and 
China are smaller compared with the other target countries because their assumed 
uncertainties in IEA national totals are larger (see Section Error! Reference source not 
found.). These results show that if independent information about emissions are available at 
weekly time scale, it is possible to combine this bottom-up information with top-down 
constraints from atmospheric measurements in the CCFFDAS approach to achieve a strong 
reduction in posterior fossil fuel emission uncertainty. 
 
For the “other” sector (Error! Reference source not found.) the uncertainty reductions in 
weekly emission rates are larger than that of the electricity generation sector. With one satellite 
(experiment 1) the posterior uncertainties in weekly emission rates from the other sector are 
already smaller than the actual national emissions from this sector, i.e., one satellite can 
provide informative estimates of weekly emission rates from the other sector with relative 
uncertainty below 100%. As previously explained, most of the observation information in this 
case goes toward constraining emissions from the other sector because the other sector has 
larger prior uncertainties than the electricity generation sector. When the prior uncertainties in 
the electricity generation sector were inflated by a factor of 10 (experiment 4), the posterior 
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uncertainties in emission rates for the other sector became larger than the actual emission 
rates for Germany, Poland and Australia, of comparable value for Brazil, and still smaller than 
the actual emission rates for China. Hence, if the prior uncertainty in the electricity generation 
and other sectors are of comparable magnitude, our results suggest that one satellite is able 
to constrain weekly emission rates from larger countries with large emissions like China. 
Because the posterior uncertainties for the other sector show a stronger sensitivity to 
observations, it is useful to compare these posterior uncertainties to assess how different 
assumptions on observational uncertainties affect the results. Experiment 2 is similar to the 
default experiment (experiment 1) but with the addition of correlated systematic errors in the 
satellite observations (see Section Error! Reference source not found.). These correlated 
errors degrade the performance and increase the posterior uncertainty compared with the 
default experiment considerably, as they reduce the weight of the observations. Similarly, 
experiment 3 is the same as the default experiment except for the inclusion of representation 
error due to the mismatch in resolution between the satellite images and the atmospheric 
transport model (see Section Error! Reference source not found.). In this case 
representation error increases posterior uncertainties for the other sector by 17.8% in 
Australia, 36.3 and 40.3% in China and Germany, and about 63% in Australia and Poland 
relative to the default experiment. Nevertheless, one satellite with representation error still 
achieves substantial uncertainty reductions compared with a network of surface stations 
alone. We note that representation errors will furthermore be decreased when the resolution 
of the transport model is increased. Increasing the number of satellites from one to four 
(experiment 6) reduces posterior uncertainties by about 13–31% relative to the posterior 
uncertainties in the default experiment with one satellite (experiment 1). As for the electricity 
generation sector, experiment 5 shows a synergistic exploitation of bottom-up inventory 
information and top-down constraints by one satellite, which results in posterior uncertainties 
relative to the national emissions less than 11% for Brazil, China and Poland and less than 
4% for Australia and Germany. 
 
The inclusion of surface observations (experiment 7) does not result in substantial uncertainty 
reductions for emissions from the other sector compared with the default experiment with one 
satellite. This could be due to low sensitivity of the in situ observations to the fossil fuel 
emissions for the target countries. Experiment 8 shows that the 15 observational sites alone 
do not provide much constraint on the emissions from the other sector during the week of the 
experiment except for Germany and Poland, likely because of the far distance between the 
other target countries and the sites and the relatively short one-week assimilation window. 
This is confirmed in experiment 9 with the same 15 surface stations but half of the 
observational uncertainty, which further reduces posterior uncertainties in Germany and 
Poland but has a minimal impact on posterior uncertainties in the other three countries. 
Expanding the surface network to 141 sites (experiment 11) substantially reduces posterior 
uncertainties in emission rates from the other sector, especially in China. However, the 
posterior uncertainties are still much larger than for the experiment with one satellite. Similarly, 
adding radiocarbon observations to the 15 observational sites does not help much to constrain 
emissions for these target countries because of the long distance between the emissions and 
observational points and short assimilation window. With 141 observational sites the 
radiocarbon observations help to further constrain emission rates from the other sector. 
Although these experiments show that the surface network generally provides a poor 
constraint on fossil fuel emissions, it is important to remember that the constraint could be 
stronger with a longer assimilation window, and that the surface network is still important to 
observe background conditions and validate satellite measurements. 
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Figure 12: CCFFDAS posterior uncertainties of national total emissions (other sector and first 
week of June) from full Jacobian (black) and leading Eigenvalue approximation (red); left for 
Brazil and right for China. 

 
As mentioned in Section 2.1, the monitoring of fossil fuel CO2 emissions has to come with a 
sufficiently low uncertainty in order to be useful for policymakers. An advantage of the present 
CCFFDAS setup is that is uses the full Jacobians to derive the posterior uncertainties. In an 
ensemble-based approach the Jacobians would be represented by ensemble simulations. 
Such an ensemble must be of a sufficient size to properly represent the full PDFs, otherwise 
it could suffer from sampling errors. To examine how undersampling would affect the posterior 
uncertainties, we conducted an experiment where an approximation of the Jacobian was used 
in place of the full Jacobian. The approximate Jacobian was created using the leading 
Eigenvalues of the full Jacobian. Figure 12 shows the results for Brazil and China using the 
leading 1 to 20 Eigenvalues. Compared with using the full Jacobian, the posterior uncertainties 
using the approximate Jacobian are substantially higher, even if it captures the leading 20 
Eigenvalues: >800 MtC/yr instead of 16 MtC/yr for Brazil, and >1100 MtC/yr instead of 133 
MtC/yr for China. It is therefore essential for ensemble-based methods to use a sufficiently 
large ensemble size combined with ensemble methods such as covariance localisation to 
adequately represent the full PDFs. The present CCFFDAS setup can be used to support the 
setup of a suitable ensemble-based approach for quantification of posterior uncertainty. 
 
Figure 13 shows the correlation in posterior uncertainties between different targets. The 
correlations between targets are generally negligible except for the negative correlations 
between the electricity generation and other sectors within the same country, which indicate 
that the sum over the sectors is better constrained than the difference between the sectors. 
For example, an underestimated emission rate for the electricity generation sector for one 
country would likely lead to an overestimated emission rate for the ‘other’ sector for the same 
country, and vice versa. There are also some small positive correlations, especially between 
the other sectors of a few countries. Such positive correlations are indicative of 
interconnections between the targets introduced by the control vector and modelling 
components. For example, some of these countries such as Germany and Poland share 
common PFTs, which are assumed to be controlled by global parameters. This creates a 
positive uncertainty correlation in natural fluxes over e.g. Germany and Poland, which 
translates to a positive uncertainty correlation for fossil fuel emissions between the two 
countries, especially for the other sector which tends to have more spread out emissions over 
the countries. By evaluating not only the posterior uncertainties but also the correlation 
between uncertainties, we can gain a more complete understanding of the constraints 
provided by different observations on the fossil fuel emissions. 
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Figure 13: Posterior uncertainty correlation for default experiment (exp. 1 in Table 4). 

 

The results presented so far (Tables 5 and 6) provide uncertainties 𝜎(𝑦) for the emission rates 
in the first week of June 2008 in the unit MtC/yr. To extrapolate these uncertainties to annual 
emissions, we assume that we would obtain equal uncertainties for emissions in each of the 
other weeks in 2008 and that these uncertainties would be uncorrelated, which means that we 

can calculate the uncertainty in the annual emissions (fa) from the uncertainties in the weekly 

emissions (f1), …, (f52) by 
 

σ(𝑓𝑎)2 = ∑ σ(𝑓𝑖)252
𝑖=1 = ∑ (

σ(y)

52
)252

𝑖=1 =
1

52
σ(𝑦)2    (16) 

 
Tables 7 and 8 show the result of this calculation for the default experiment and the other 
sector (Table 7) and aggregated over both sectors (Table 8) compared to the respective 
national totals from the inventories as derived in Section 6.1. For the other sector, the posterior 
uncertainty would be similar to the uncertainty in the national total for Australia and Poland, a 
bit higher for Germany, and considerably lower for Brazil and China. For the total emissions 
(i.e. aggregated over both sectors) the posterior uncertainties are yet lower, both absolutely 
and in relation to the uncertainty in the national totals, with negative uncertainty correlations 
among the sectors in any given country. As mentioned this negative uncertainty correlation 
means that the sum over the sectors is better constrained than a single sector. Thus, as 
expected, relative to the inventories, CCFFDAS performs better for aggregated totals, in 
particular for countries with high negative correlations in sectorial uncertainties (Australia and 
China). The assumption of uncorrelated weekly uncertainties is certainly optimistic. The last 
row in Tables 7 and 8 explores the effect of uncertainty correlation in the annual uncertainty 
assuming that the weekly uncertainties are completely correlated throughout the year (e.g., 
an underestimated emission rate week 1 would lead to the same underestimation weeks 2 
through 52). We note that completely correlated uncertainty is an extreme and unrealistic 
case, which ignores the information content added by each week of XCO2 observations. Also, 
the fact that an observation in a given week will act as a constraint on emissions in the same 
week but also on emissions in the weeks before will produce negative uncertainty correlations 
in the temporal domain, which tend to reduce the uncertainty in the annual integral. Hence, 
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the truth lies somewhere between these two cases. We stress again that these approximate 
posterior uncertainties do not include the national totals from inventories, even though (as 
shown above) this is technically possible. Table 7 and 8 summarise the annual results for the 
two sectors. 
 

 

Table 7: Uncertainty in annual emissions rates in MtC/yr; 'other' sector. 

Description Australia Brazil China Germany Poland 

National total 1.8 9.3 128.6 4.2 2.8 

Uncorrelated weekly emissions 2.2 3.0 24.8 7.0 2.7 

Fully correlated weekly emissions 15.7 21.8 179.6 50.6 19.7 

 

Table 8: Uncertainty in annual emission rates in MtC/yr; electricity generation sector. 

Description Australia Brazil China Germany Poland 

National total 2.7 9.9 187.2 5.5 4.1 

Uncorrelated weekly emissions 2.2 2.9 18.6 6.5 2.2 

Fully correlated weekly emissions 115.8 21.1 134.3 46.8 15.8 
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9 Conclusion 

This deliverable report provides a description of the CCFFDAS modelling framework, the 
applied QND methodology as well as the results obtained from the work performed in task 3.5 
‘Perform QND experiments with an advanced data assimilation system (CCFFDAS) to 
establish inversion strategy’. We have developed a prototype of a global Carbon Cycle Fossil 
Fuel Data Assimilation System (CCFFDAS) that combines the functionalities of the Fossil Fuel 
Data Assimilation System by Asefi-Najafabady et al. (2014) and of the Carbon Cycle Data 
Assimilation System by Kaminski et al. (2017a). The CCFFDAS was applied to assess a 
number of design aspects of the upcoming Monitoring and Verification Support capacity as 
part of the Copernicus CO2 Monitoring mission (CO2M). The assessment was based on the 
Quantitative Network Design technique and quantified the mission's performance in terms of 
the posterior uncertainty in the totals of the sectorial fossil CO2 emission rates for selected 
countries and the first week in June 2008. We analysed two different observing networks, 
ground based in situ observations and satellite based total column observations, in a range of 
configurations. 
 
We find that 

• At country scale, a single CO2M satellite achieves posterior uncertainties in the weekly 
sectorial emission rates well below the weekly emission rate for the national total for 
the sectors, assuming that annual emissions are evenly divided between all weeks. 

• For each sector, a constellation of four satellites achieves a larger reduction in 
posterior uncertainty, i.e. the number of satellites matters. This added value of the extra 
satellites is more pronounced for the other sector than the electricity generation sector, 
where the uncertainty over China is reduced by about 30% for this particular case (first 
week in June 2008) when going from a single satellite to the four-satellite constellation. 
This is below the theoretical possible 50% reduction due to the different satellite tracks 
and with it differences in cloud cover and systematic errors for this particular week. 

• Correlated systematic errors in the satellite XCO2 can seriously degrade the 
performance, resulting in increased posterior uncertainties from 15% to almost 130% 
relative to the case with no systematic errors. 

• The representation error due to the mismatch in resolution between the satellite 
images and the atmospheric transport model increases posterior uncertainties, 
however, these uncertainties will be decreased when the resolution of the transport 
model is increased. 

• If national inventories at weekly time scale were available, their inclusion would result 
in a strong reduction in posterior uncertainty (the largest reduction we obtained from 
all our experiments) compared with using atmospheric observations only, which 
quantifies the synergy / complementarity between the atmospheric (and other) 
observations and the inventories. The synergistic exploitation of diverse data steams 
is a particular strength of the CCFFDAS approach. However, by including national 
inventory data in the assimilation the obtained results are not an independent 
estimation of the emissions from atmospheric data anymore. 

• A hypothetical projection of the posterior uncertainties in the weekly emission rate to 
the annual scale shows the potential for a CCFFDAS / CO2M verification mode 
(operating independently from the inventories), which may provide useful information 
that is complementary to the inventories with uncertainty ranges in the same order of 
magnitude. 

• The inclusion of surface observations does not result in substantial uncertainty 
reductions for sectorial emissions compared with the default experiment with one 
satellite. However, we note that the current in situ network was not designed for 
observing anthropogenic emissions, nevertheless it is important to observe 
background conditions and validate satellite measurements. 



C0
2 
HUMAN EMISSIONS 2020  

 

D3.6 Inversion strategy based on joint QND assessments 36 

• Adding radiocarbon observations helps to further constrain emission rates from the 
other sector especially for countries with a larger proportion of biogenic fluxes such as 
e.g. Brazil and Poland. 
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