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1 Executive Summary 

To aid the analysis of the effect of atmospheric aerosol for the detection and quantification of 
CO2 plumes from space-borne observations, datasets of synthetic satellite observations are 
generated. To this end, a new parameterization is developed that estimates expected random 
and systematic errors for the retrieval of the column-averaged dry-air mole fraction of CO2 
(XCO2) for CO2 instrument flying in constellation aboard six satellites in a sun-synchronous 
orbit. The parameterization takes the sun-satellite geometry as well as spectrally resolved 
surface albedo and aerosol optical thickness as input and estimates the corresponding XCO2 
retrieval errors using two artificial neural networks (ANN). The parameterization has been 
trained using a global dataset of simulated satellite measurements and corresponding XCO2 
retrievals representing a large variety of geophysical scenarios. Random (noise) XCO2 errors 
are parameterized with almost perfect precision (R=0.99). For the systematic errors, 
representing the deviation between retrieved and true XCO2, the precision is slightly lower 
(R=0.87), given the many aerosol properties that contribute to the systematic XCO2 errors like 
aerosol type, shape, amount, size distribution and vertical distribution. 

The new XCO2 error parameterization is used to generate two datasets of synthetic satellite 
observations for two domains. The first domain, focusing on Europe, covers a geographical 
area ranging from approx. 33°N to 66°N and -26°E to 53°E (see e.g. Figure 5). The second 
domain, focusing on the city of Berlin and its surroundings, covers an area ranging from 
approx. 49°N to 55°N and 7.6°E to 19°E (see e.g. Figure 9). For the European domain, 
synthetic satellite observations are generated for the entire year of 2015, whereas for the 
Berlin domain, observations are limited to February and July 2015. Using a satellite orbit 
simulator developed by SRON, satellite orbits that intersect with the two domains are 
simulated for the six satellites. With a satellite Level-2 product generator developed by EMPA, 
high-resolution aerosol (and XCO2) data simulated with the LOTOS-EUROS model, as well 
as MODIS surface albedo data are projected onto the simulated satellite grids such that the 
corresponding random and systematic XCO2 errors can be estimated for each orbit and 
satellite pixel using the XCO2 error parameterization. For each satellite orbit intersecting the 
respective domains a netcdf-file is generated containing the synthetic satellite observations 
for the given orbit segment including also the input data (albedo and aerosol optical thickness) 
used by the XCO2 errors parameterization. The collection of these orbit files, ca. 7800 and 
270 orbits for the European and Berlin domains, respectively, constitute the deliverable D2.5 
Synthetic satellite datasets of the CO2 Human Emissions (CHE) project. 

 

2 Introduction 

Within the CO2 Human Emissions (CHE) project, the effect of atmospheric aerosol when 
detecting and quantifying CO2 plumes from future satellite observations is studied. To this end, 
synthetic satellite observations with realistic estimates of random and systematic errors are 
needed. By analysing CO2 plumes in such synthetic satellite observations, one can learn about 
the expected CO2 flux estimate errors for a given instrument and mission design and 
atmospheric scenario and hence, aid the decision making in optimizing the satellite mission. 

2.1 Background 

The Copernicus CO2 Monitoring (CO2M) mission will enable space-borne monitoring of CO2 
plumes through observations of enhancements in the column-averaged dry-air mole fraction 
of CO2 (XCO2). The ability to inversely estimate corresponding CO2 fluxes from such 
observations is limited by errors in the retrieved XCO2. Such errors arise due to instrument 
noise and inadequate information about the light path through the atmosphere as a result of 
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scattering particles like aerosol. To allow for the investigation about how such random and 
systematic errors will affect the ability to detect and quantify CO2 plumes from XCO2 
observations with the CO2 instrument aboard CO2M, realistic synthetic observations and 
XCO2 retrievals with corresponding XCO2 errors for scenes with known atmospheric 
composition are necessary. To this end, three-dimensional fields of aerosol properties have 
been simulated at a high spatial resolution of 0.05° × 0.05° (European domain) and 0.01° × 
0.01° (Berlin domain) using the LOTOS-EUROS chemistry transport model (Manders et al. 
2017). These simulations were conducted by TNO as part of task T2.3 in CHE. Corresponding 
fields of XCO2 have also been simulated. 

The Multi-Angle Polarimeter (MAP) instrument and its expected error reduction is not 
considered in this study, since the code development work, required to account for the 
additional MAP data in the radiative transfer simulations, is to comprehensive to be conducted 
in this work package, given the allocated resources. Hence, the systematic errors reported in 
this deliverable reflect those expected for the CO2 instrument alone, and not for the CO2M 
mission as a whole. 

Performing radiative transfer simulations for all modelled scenes within CHE in order to 
quantify the random and systematic XCO2 errors is computationally too expensive. Hence, a 
parameterization that can reasonably estimate the XCO2 retrieval errors is developed and 
used to generate the datasets of synthetic satellite observations. 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

The objective of this deliverable is to provide two datasets of synthetic observations of the CO2 
instrument planned to fly aboard the CO2M satellites. The first dataset will contain synthetic 
observations over Europe during the course of 2015, whereas the second dataset will focus 
on a smaller domain around the city of Berlin for the months of February and July in 2015. 

The deliverable provides simulated retrievals of XCO2 (taken from LOTOS-EUROS model 
output) and, more importantly, the corresponding random and systematic XCO2 errors 
projected onto the satellites’ observation grids. 

2.2.2 Work performed in this deliverable 

The main part of this deliverable has been to develop a new parameterization for the 
estimation of random and systematic XCO2 errors of synthetic satellite observations. This also 
included extensive radiative transfer simulations using a global ensemble of various 
geophysical scenarios that can be expected in terms of sun-satellite geometry, surface albedo 
and aerosol properties. 

Furthermore, maps of surface albedo data have been generated for the two domains and a 
satellite Level-2 product generator software provided by EMPA (including an orbit simulator 
from SRON) has been adapted in order to read the albedo maps as well as the LOTOS-
EUROS model output and project the data onto the simulated satellite observation grids. 

2.2.3 Deviations and counter measures 

The initial idea was to use a subset of the model data from LOTOS-EUROS to simulate 
synthetic satellite observations that could be used to develop the error parameterization that 
could then be applied to the full time series of LOTOS-EUROS data for the two domains. But 
in order to be able to spend more time on the development of the new XCO2 error 
parameterization, it was early on decided to instead use a global ensemble of geophysical 
data already implemented in the radiative transfer code to generate a dataset of synthetic 
satellite observations that could be used to develop the XCO2 error parameterization. This 
approach, using a global ensemble for the development, also has the advantage that the 
parameterization is less limited to the two domains simulated and analysed in this study. 
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3 XCO2 error parameterization 

For this deliverable a new parametrization has been developed. The parameterization 
estimates the random and systematic errors that are expected to accompany XCO2 retrievals 
from the CO2 spectrometer aboard CO2M. The parameterization is based on an artificial 
neural network (ANN) approach and consists of two ANNs. The first ANN estimates the 
random error 𝜎𝑟𝑑𝑚, representing the instrument’s signal-to-noise-ratio (SNR) propagated into 
a statistical error estimate according to the rules of Gaussian error propagation. The second 
ANN estimates the systematic error 𝜎𝑠𝑦𝑠, representing the difference between retrieved XCO2 

(retr) and true XCO2 (true). 

𝜎𝑠𝑦𝑠 =
𝑋𝐶𝑂2(𝑟𝑒𝑡𝑟)−𝑋𝐶𝑂2(𝑡𝑟𝑢𝑒)

𝑋𝐶𝑂2(𝑡𝑟𝑢𝑒) 
∙ 100%.         (1) 

Both ANNs take eight input variables: solar zenith angle (SZA) and viewing zenith angle (VZA) 
as well as surface albedo and aerosol optical thickness (AOT) at three different wavelengths 
representing three spectral windows near 760 nm, 1600 nm and 2000 nm (hereafter referred 
to as NIR, SWIR-1 and SWIR-2, respectively). A schematic overview of the parameterization 
can be seen in Figure 1. 

 

Figure 1: Schematic overview of XCO2 error parameterization. 

In order for the parameterization to learn and understand the relationship between input data 
and corresponding XCO2 errors, the ANNs have to be trained. This is done using a supervised 
learning approach where the ANNs are provided with pairs of input data and known XCO2 
errors. The weights (free parameters) of the ANN are then continuously updated and optimized 
such that the error between the reference XCO2 error (true) and the error estimated by the 
ANN is minimized. To this end a training dataset with the relevant input data as well as the 
corresponding random and systematic XCO2 errors is required. 

3.1 Training dataset 

To generate the training dataset, a global ensemble with a large collection of geophysical 
scenarios is used. Vertical fields of meteorology and trace gas concentrations stem from the 
ECHAM5-HAM model (Stier et al. 2005), CarbonTracker model (Peters et al. 2007) and Tracer 
Model 4 (Meirink et al. 2006). Surface albedo representative for the NIR, SWIR-1 and SWIR-
2 windows stem from the MODIS product MCD43A4 (Schaaf et al. 2002). Finally aerosol 
optical properties are calculated for an aerosol size distribution superimposed from five 
aerosol types and seven log-normal size distributions at 19 vertical layers, read from the 
ECHAM5-HAM model (Stier et al. 2005). This global ensemble has been used in several 
previous studies (where further details on the dataset can be found) in order to estimate the 
random and systematic greenhouse gas retrieval errors of both operational and proposed 
satellite instruments (Butz et al. 2009, 2010, 2012, 2015, Strandgren et al. 2020).  
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The global ensemble is used to simulate synthetic satellite measurements (spectral radiances) 
using the radiative transfer software RemoTeC (Butz et al. 2011, Schepers et al. 2014). For 
each measurement the expected measurement noise is computed assuming the satellite orbit 
configuration described in Kuhlmann et al. (2019) and coefficients for instrument SNR 
computations provided by SRON (Hein van Heck, personal communication, 2019). These are 
the orbit and SNR data currently assumed for the CO2 spectrometer aboard the CO2M. 

The simulated spectra of spectral radiances and the corresponding measurement noise are 
then used to retrieve fields of XCO2 using the RemoTeC retrieval algorithm (e.g. Butz et al. 
2011). For the retrieval, a comparatively simple forward model is used where e.g. only three 
aerosol parameters are fitted (amount, the size parameter of a single mode power-law size 
distribution and the centre height of a Gaussian aerosol height distribution). Such differences 
in the aerosol representation compared to the forward model used to simulate accurate 
synthetic measurements lead to forward model errors that, alongside the instrument noise 
induced errors propagate into the retrieved quantity XCO2. Previous studies have shown that 
this approach gives a good estimate of the random and systematic errors of greenhouse gas 
concentration retrievals under scattering conditions (e.g. Butz et al. 2009, 2010). 

In total, synthetic satellite measurements and corresponding XCO2 retrievals are simulated for 
approx. 250 000 scenes representing different days throughout the year as well as varying 
satellite viewing zenith angles, alongside the varying geophysical scenarios within the global 
ensemble itself. 

3.2 Training the ANNs 

To construct and train the ANNs, a similar approach as in Strandgren et al. (2017) is used, but 
adapted and optimized for the task of this study. The two ANNs that constitute the XCO2 error 
parameterization share the same topology and consist of four layers. One input layer with 
eight neurons (one for each input variable), two hidden layers with 16 hidden neurons each 
and one output layer with one neuron (random and systematic XCO2 errors for the two ANNs, 
respectively). The ANNs are trained using 80% of the training dataset described above; the 
remaining 20% are used for internal validation (10%) during the training as well as final 
validation (10%) of the ANNs (see Section 3.3).  

During the training, the ANN is provided with a set of input-output pairs. Using the input data 
and the current weights (randomly initialized) one output value (either random or systematic 
XCO2 error depending on which ANN is being trained) is computed for each set of input data. 
Each weight in the ANN is then updated such that the total error between the estimated and 
reference XCO2 error is minimized. This procedure is repeated until the total error does no 
longer improve. To make sure that the ANNs do not overfit and loose their ability to generalize, 
the error against the internal validation dataset is also monitored during the training. 

3.3 Validation of the ANNs 

Next, the performance of the ANNs is evaluated in order to analyse to which extent the 
relationship between the input data and the corresponding XCO2 errors have been understood 
and learnt by the ANNs. To this end, the 10% of the training dataset that was never used while 
training the ANNs, is used. Figure 2 shows two density scatter plots with the random and 
systematic XCO2 errors in the left and right panels, respectively. The x-axes show the 
reference XCO2 errors computed through radiative transfer simulations, while the y-axes show 
the corresponding parameterized XCO2 errors estimated by the ANNs.  
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Figure 2: Density histograms showing the relationship between the true reference XCO2 errors 
(x-axes) and the corresponding XCO2 errors estimated by the ANNs (y-axes). Left: Random XCO2 
error. Right: Systematic XCO2 error. The dashed line shows the 1-1 relationship. 

The parameterization can model the random errors almost perfectly (R=0.99). This is expected 
since the random errors to a large degree are directly related to the signal strength and hence 
the surface albedo and SZA, information which is provided as input data. For the systematic 
errors the precision is slightly lower (R=0.87), since the errors are not only related to the signal 
strength, but also the amount, type, shape, size distribution and vertical distribution of the 
atmospheric aerosol, information that can not be fully represented in the AOTs provided as 
input data. 

For a reference scene with SZA of 50 degrees and surface albedo equal to 0.2, 0.1 and 0.05 
for the NIR, SWIR-1 and SWIR-2 spectral bands respectively (referred to as VEG_50 in 
Bovensmann et al. 2010) the error parameterization estimates a random XCO2 error of 1.0 ‰ 
(i.e. around 0.4 ppm), assuming clear sky and nadir view. This is well below the XCO2 
precision requirement of 0.7 ppm specified for CO2M (ESA 2019). The random XCO2 errors 
derived in this deliverable can potentially be scaled to represent also other noise scenarios 
(e.g. 0.5, 0.7 and 1.0 ppm @ VEG_50), if such scenarios are to be investigated (see e.g. 
Kuhlmann et al. 2019). 

 

4 MODIS surface albedo 

In order to apply the parameterization for all simulated satellite orbits over Europe in 2015, 
corresponding surface albedo data are required. To this end, the Nadir Bidirectional 
Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data (MCD43A4; 
Schaaf and Wang (2015)) for the MODIS bands 2 (≈860 nm), 6 (≈1600 nm) and 7 (≈2100 nm) 
are used. This is the same albedo data used to develop the parameterization. The albedo data 
for 2015 have been downloaded and projected onto the European (and Berlin) domain, with a 
spatial resolution of 0.01° × 0.01°. Figure 3 shows the surface albedo near 860 nm (NIR, 
MODIS band 2) and 2100 nm (SWIR-2, MODIS band 7) for the European domain on 2015-
02-15 (top) and 2015-07-15 (bottom). In winter time, there are areas of high albedo in the NIR 
spectral region, especially over Ukraine, Russia and Turkey, but also to some extent over the 
Nordic countries, as a result of snow cover. These areas are characterized by low surface 
albedo in the SWIR-2 spectral region. In summer time, the albedo is comparatively 
homogeneous across the European domain (especially for NIR), with highest albedo for 
barren-type surfaces e.g. in Spain, Turkey and Northern Africa. Due to persistent cloud cover 
and low-quality data there are gaps in the surface albedo maps (e.g. oceans as well as Ireland 
and Scotland on 2015-07-15), which consequently can lead to data gaps also in the 
parametrized XCO2 errors later on. 
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Figure 3: Left: Surface albedo near 870 nm (NIR, MODIS band 2) projected onto the European 
domain. Right: Surface albedo near 2100 nm (SWIR-2, MODIS band 7) projected onto the 
European domain.  Top: 2015-02-15, boreal winter. Bottom: 2015-07-15, boreal summer. 

 

5 Synthetic satellite observation datasets 

The final product of this deliverable consists of a set of data files representing simulated orbits 
of synthetic satellite observations over the European and Berlin domains for the two respective 
time periods. Hence, satellite orbits are computed for the given satellite orbits (again using the 
CO2M orbit configuration described in Kuhlmann et al. 2019). The modelled AOT and XCO2 
read from LOTOS-EUROS output as well as the MODIS surface albedo maps are then re-
projected onto the satellite observation grids. To this end a python package provided by EMPA 
was used (ESA Project SMARTCARB, 2018). The software package generates Level-2 
satellite products by simulating given satellite orbits using an orbit simulator developed by 
SRON (SRON, 2017) and re-projecting external model/observational data onto the satellite 
grids. Adaptions to the software package have been done in order to read and process the 
LOTOS-EUROS model and MODIS albedo data used in this study. Furthermore, the new 
XCO2 error parameterization was integrated in the software package in order to compute the 
XCO2 errors and include them to the output files. 

Synthetic observations of six satellites are simulated; SAT-1, SAT-2, SAT-3, SAT-4, SAT-5 
and SAT-6. The six satellites are assumed to fly evenly distributed (60 degree displacement) 
in the same sun-synchronous orbit, leading to a temporal offset of approx. 16 minutes between 
the satellites. A set of six satellites is simulated such that different possible constellations can 
be investigated with e.g. two satellites flying 180 degrees apart, 3 satellites flying 120 degrees 
apart etc. In total ca. 7800 orbits that intersect with the European domain during the course of 
2015 have been simulated; of which ca. 270 of the orbits intersect with the Berlin domain 
during February and July 2015. 

Although, the simulated orbits do not differ between the European and Berlin domains, the 
synthetic satellite observations are different since LOTOS-EUROS model data at a higher 
resolution of 0.01° × 0.01° have been used for the Berlin domain, compared to the 0.05° × 
0.05° available for the European domain. 
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The orbit files follow the following naming convention: 

SAT-X_dom_YYYYMMDDTHHMMSS_oNNNN.nc 

where ‘X’ represents the six satellites (‘1’, ‘2’, ‘3’, ‘4’, ‘5’ and ‘6’), ‘dom’ the domain (‘eur’ or 

‘ber’), ‘YYYYMMDD’ the date, ‘HHMMSS’ the acquisition time in UTC at the orbit centre and ‘NNNN’ 

the orbit number (starting at 0000 for the first orbit on 2015-01-01). Each netcdf-file contains 
17 variables as listed and explained in Table 1. The surface albedo and AOT included in the 
orbit files are the input data used to compute the XCO2 errors. These data fields should not 
be considered part of the observational product, but are kept in the orbit files as reference for 
a better understanding of the XCO2 errors. 

 

Table 1: Variables included in the simulated satellite orbit files. 

Variable Description 

albedo_nir Surface albedo from MODIS band 2 (MCD43A4) 

albedo_swir1 Surface albedo from MODIS band 6 (MCD43A4) 

albedo_swir2 Surface albedo from MODIS band 7 (MCD43A4) 

aot_nir Aerosol optical thickness at 870 nm from LOTOS-EUROS model 

aot_swir1 Aerosol optical thickness at 1650 nm from LOTOS-EUROS model 

aot_swir2 Aerosol optical thickness at 2060 nm from LOTOS-EUROS model 

orbit Satellite orbit settings 

latitude Pixel center latitude 

latitude_corners Pixel corners latitude 

longitude Pixel center longitude 

longitude_corners Pixel corners longitude 

sza Solar zenith angle 

time Time of measurement since 2015-01-01 00:00:00 UTC 

vza Viewing zenith angle 

xco2 Column mixing ratio of CO2 in dry air from LOTOS-EUROS model 

xco2_err_rdm XCO2 random error 

xco2_err_sys XCO2 systematic error 

 

5.1 Synthetic satellite observations over the European domain 

Figure 4 shows the MODIS surface albedo for the three spectral windows; NIR, SWIR-1 and 
SWIR-2, for a satellite orbit (SAT-1) crossing the European domain on 2015-07-07. Albedo 
data for the entire domain is shown in a shaded nuance. Similarly, the modelled AOT for the 
three spectral windows for the same orbit is shown in Figure 5. Finally, Figure 6 shows the 
modelled XCO2 together with the corresponding XCO2 random and systematic errors 
computed with the XCO2 error parameterization.  
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Figure 4: MODIS surface albedo in three spectral regions (NIR, SWIR-1 and SWIR-2) projected 
on a satellite orbit crossing the European domain on 2015-07-07. Shaded areas show the surface 
albedo for the entire domain as reference. 

 

 

Figure 5: Modelled AOT in three spectral regions (NIR, SWIR-1 and SWIR-2) projected on a 
satellite orbit crossing the European domain on 2015-07-07. Shaded areas show the modelled 
AOT for the entire domain as reference. 
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Figure 6: Modelled XCO2 (top) projected on a satellite orbit crossing the European domain on 
2015-07-07 together with the corresponding random (bottom left) and systematic (bottom right) 
XCO2 retrieval errors computed with the XCO2 error parameterization. Shaded areas show the 
modelled XCO2 for the entire domain as reference. 

From Figure 6, it is clear that the random XCO2 errors generally increase with latitude. This is 
a result of the corresponding increase in SZA and thus the gradual decrement in signal 
strength. Additional variability in the random XCO2 errors can be seen as a result of the varying 
surface albedo in the short-wave infrared spectral regions, where lower albedo infers larger 
random errors. Atmospheric aerosol and AOT has little effect on the random errors. The 
systematic XCO2 errors varies between approx. -0.2 and 1.0 ppm, with the largest deviations 
from the true XCO2 occurring either for comparatively thick aerosol layers (AOT (NIR) > 0.2) 
like in the Po Valley or intermediate aerosol layers in combination with large SZA and/or low 
albedo in the SWIR spectral region (and thus weak signal), like in northern Sweden. 

For a better understanding of how the six simulated satellites fly in constellation, Figure 7 
shows the parameterized XCO2 errors for all six satellites as they fly over the European 
domain on 2015-05-03. For each satellite, two consecutive orbits are shown, meaning that the 
easternmost orbit is the first orbit of SAT-1 (crossing domain centre at 09:48 UTC) whereas 
the westernmost orbit is the second orbit of SAT-6 (crossing domain centre at 12:45 UTC). 
Again a clear latitudinal gradient, with some additional albedo related variability is seen in the 
random XCO2 errors, ranging from approx. 0.2 to 1.0 ppm. Although the systematic errors are 
generally small (around 0.0 ppm i.e. no bias), there are also scenes that exhibit considerably 
larger errors (≳ 2.0 ppm, with maximum values exceeding 12 ppm) and variability. Again, the 
large systematic errors are triggered by thicker aerosol layers and weak signal, as a result of 
large SZA and low surface albedo in the SWIR spectral region. 
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Figure 7: Parameterized random (left) and systematic (right) XCO2 errors over the European 
domain on 2015-05-03. Errors from two orbits each of the six simulated satellites are shown. 

 

5.2 Synthetic satellite observations over Berlin domain 

In additional to the European domain, additional aerosol and CO2 simulations have been 
performed at a higher spatial resolution of 0.01° × 0.01° for a second domain, focusing on the 
city of Berlin and its surroundings. Corresponding synthetic satellite observations have been 
simulated using the high-resolution model data and XCO2 error parameterization, assuming 
the same six satellites flying in the same sun-synchronous orbit. The high-resolution model 
data for the Berlin domain, and hence corresponding synthetic satellite observations, are 
available for February and July 2015. Figure 8 to Figure 10 show the surface albedo, modelled 
AOT and XCO2 as well as the corresponding XCO2 random and systematic errors computed 
with the XCO2 error parameterization for a satellite orbit (SAT-1) crossing the Berlin domain 
on 2015-02-14. 

 

Figure 8: MODIS surface albedo in three spectral regions (NIR, SWIR-1 and SWIR-2) projected 
on a satellite orbit crossing the Berlin domain on 2015-02-14. Shaded areas show the surface 
albedo for the entire domain as reference. 
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Figure 9: Modelled AOT in three spectral regions (NIR, SWIR-1 and SWIR-2) projected on a 
satellite orbit crossing the Berlin domain on 2015-02-14. Shaded areas show the modelled AOT 
for the entire domain as reference. 

 

 

Figure 10: Modelled XCO2 (top) projected on a satellite orbit crossing the Berlin domain on 2015-
02-14 together with the corresponding random (bottom left) and systematic (bottom right) XCO2 
retrieval errors computed with the XCO2 error parameterization. Shaded areas show the 
modelled XCO2 for the entire domain as reference. 
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The random XCO2 errors are generally considerably higher in Figure 10, compared to Figure 
6 and Figure 7. This is directly related to the lower SZA and hence weaker signal in February, 
compared to July and May. Largest random errors (1-2 ppm) are observed over snow covered 
areas, around the border between Germany and Czech Republic, characterized by low 
surface albedo and hence weak signal in the SWIR spectral region, where the absorption by 
CO2 takes place. Also over small isolated areas in Germany and Poland, with low surface 
albedo (Albedo (SWIR-2) ≲ 0.05), the random XCO2 errors are comparatively large. Also the 
largest systematic errors, ranging from approx. 2.0 to 12.0 ppm, are observed over snow 
covered areas, as a result of the low albedo and weak signal in the SWIR spectral region. 
Large systematic errors around 4.0 to 8.0 ppm are also observed over the Czech Republic 
where a thick aerosol layer with AOT (NIR) > 0.5 is modelled. For scenes with neither 
particularly low surface albedo (in the SWIR spectral region) nor thick aerosol layers, the 
systematic errors are around 0.7 ppm. 

 

6 Data access 

The synthetic satellite datasets can be downloaded from the ECMWF ftp server 

ftp che-project@ftp.ecmwf.int1 

cd data-exchange/WP2/Synthetic_satellite_datasets 

The single orbit files have been archived and compressed into daily .tar.gz files that contain 
the simulated satellite orbits of a given satellite (e.g. SAT-1) that intersects with a given domain 
at a given date. The files are stored according to the following folder hierarchy and naming 
convention: 

dom 

SAT-X 

YYYY 

   SAT-X_dom_YYYYMMDD.tar.gz 

 

where ‘dom’ represents the domain (‘eur’ or ‘ber’), X the six simulates satellites (‘1’, ‘2’, ‘3’, ‘4’, 

‘5’ and ‘6’), ‘YYYY’ the year, ‘MM’ the month and ‘DD’ the day. Each .tar.gz file typically contains 

one to four netcdf-files with simulated synthetic satellite observations.  

 

7 Conclusion 

This document describes the synthetic satellite observations prepared as part of the 
deliverable D2.5 Synthetic satellite datasets. The task of this deliverable is to generate 
datasets of synthetic satellite observations with realistic estimates of random and systematic 
XCO2 errors for various geophysical scenarios that can be used to analyse the effect of 
atmospheric aerosol for the detection and quantification of CO2 plumes from space-borne 
instruments. To this end, a new error parameterization has been developed that estimates 
random and systematic XCO2 retrieval errors, expected for the CO2 instrument aboard the 
Copernicus CO2 Monitoring (CO2M) mission. The parameterization has been developed using 
a global ensemble dataset covering a large variety of geophysical scenarios for which 
synthetic satellite measurements and corresponding XCO2 retrievals have been simulated 
using radiative transfer calculations. The parameterization takes the sun-satellite geometry as 

 
1 Please contact the CHE-Coord che-coord@lists.ecmwf.int to obtain the FTP password 
access 

mailto:che-coord@lists.ecmwf.int
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well as spectrally resolved surface albedo and aerosol optical thickness (AOT) as input in 
order to compute the random (noise) and systematic (retrieved – true XCO2) XCO2 errors 
using two artificial neural networks. The random errors can be estimated with almost perfect 
precision (R=0.99), whereas the precision is slightly lower for the systematic errors (R=0.87) 
as a result of the many aerosol parameters (type, shape, amount, size distribution, vertical 
distribution) that contribute to the systematic errors. 

The XCO2 error parameterization is used to estimate the expected XCO2 retrieval errors of six 
identical CO2 instruments flying in constellation over two domains focusing on Europe (for the 
year 2015) and Berlin and its surroundings (for February and July 2015), respectively. AOT 
data computed from three-dimensional fields of aerosol properties at a high resolution of 0.05° 
× 0.05° (European domain) and 0.01° × 0.01° (Berlin domain) simulated with the LOTOS-
EUROS model are used as input for the parameterization together with MODIS surface albedo 
and sun-satellite geometry computed with a satellite orbit simulator developed by SRON. In 
total ca. 7800 orbits that intersect with the European domain are simulated (of which 270 
intersect with the Berlin domain during February and July 2015).  

To simulate the synthetic satellite observations, the orbit and instrument SNR of the CO2 
spectrometer planned to fly aboard the CO2M have been used. While the XCO2 precision 
requirement of CO2M (< 0.7 ppm for a vegetation scenario and SZA of 50 degrees) is met in 
this study, the systematic XCO2 errors do not meet the requirement of CO2M: < 0.5 ppm up 
to an AOT of 0.5. This is because the Multi-Angle Polarimeter (MAP) instrument, planned to 
fly alongside the CO2 instruments aboard CO2M, could not be considered when computing 
the systematic errors in this study. Hence, the systematic errors provided in this deliverable 
reflect the systematic errors expected when using data from the CO2 instrument alone. As 
have been shown in previous studies, the additional information from the MAP can reduce the 
systematic XCO2 errors significantly, such that the above mentioned requirement can be met 
(ESA, 2019). Consequently, one should include the additional data from the MAP in future 
studies in order to not overestimate the systematic XCO2 errors and fully understand how the 
systematic XCO2 errors are expected to propagate into CO2 flux estimate uncertainties. The 
same methodology used in this study could be used to develop an improved XCO2 error 
parameterization that also accounts for the additional aerosol information retrieved by the 
MAP. This would, however, require new radiative transfer simulations and an extended 
retrieval algorithm that also utilizes the MAP data when retrieving the XCO2. This code 
development required to extend the retrieval algorithm was not feasible within this work 
package. 

Since the MAP is not considered, the synthetic satellite datasets, in particular the combination 
of the high-resolution aerosol simulations and the XCO2 error parameterization, can, however, 
also be used to study the aerosol induced systematic XCO2 errors for other satellite 
instruments like Microcarb and OCO-2/3 as well, that do not have a MAP instrument aboard. 
Given that the aerosol error parameterization has been developed using a global ensemble of 
geophysical scenarios, synthetic satellite observations could also be simulated for other 
domains around the world, given that spectrally resolved AOT data are available. 
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8 List of abbreviations 

ANN Artificial Neural Network 

AOT Aerosol Optical Thickness 

BRDF Bidirectional Reflectance Distribution Function 

CHE CO2 Human Emissions 

CO2 Carbon dioxide 

CO2M Copernicus CO2 Monitoring mission 

DLR German Aerospace Center 

ECMWF 

EMPA 

European Centre for Medium-Range Weather Forecasts 

Swiss Federal Laboratories for Materials Science and Technology 

ESA European Space Agency 

MAP Multi-Angle Polarimeter 

MODIS Moderate Resolution Imaging Spectroradiometer 

NBAR Nadir BRDF-adjusted Reflectance 

NIR Near Infrared 

SNR Signal-to-Noise Ratio 

SRON Netherlands Institute for Space Research 

SWIR Shortwave Infrared 

SZA Solar Zenith Angle 

VZA Viewing Zenith Angle 

XCO2 Column-averaged dry-air mole fraction of CO2 

  



C0
2 
HUMAN EMISSIONS 2020  

 

D2.5 Synthetic satellite datasets  20 

9 References 

Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., 

Schneising, O., Heymann, J., Tretner, A., and Erzinger, J.: A remote sensing technique for 

global monitoring of power plant CO2 emissions from space and related applications, Atmos. 

Meas. Tech., 3, 781–811, doi:10.5194/amt-3-781-2010, 2010. 

Butz, A., Hasekamp, O. P., Frankenberg, C., and Aben, I.: Retrievals of atmospheric CO2 from 

simulated space-borne measurements of backscattered near-infrared sunlight: accounting for 

aerosol effects, Appl. Opt., 48, 3322–3336, doi:10.1364/AO.48.003322, 2009. 

Butz, A., Hasekamp, O., Frankenberg, C., Vidot, J., and Aben, I.: CH4 retrievals from space-

based solar backscatter measurements: Performance evaluation against simulated aerosol 

and cirrus loaded scenes, J. Geophys. Res. Atmos., 115, doi:10.1029/2010JD014514, 2010. 

Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., Frankenberg, C., 

Hartmann, J.-M., Tran, H., Kuze, A., Keppel-Aleks, G., Toon, G., Wunch, D., Wennberg, P., 

Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J., Notholt, J., and Warneke, T.: 

Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, 

doi:10.1029/2011GL047888, 2011. 

Butz, A., Galli, A., Hasekamp, O., Landgraf, J., Tol, P., and Aben, I.: TROPOMI aboard 

Sentinel-5 Precursor: Prospective performance of CH4 retrievals for aerosol and cirrus loaded 

atmospheres, Rem. Sens. Envir., 120, 267–276, doi:10.1016/j.rse.2011.05.030, 2012. 

Butz, A., Orphal, J., Checa-Garcia, R., Friedl-Vallon, F., von Clarmann, T., Bovensmann, H., 

Hasekamp, O., Landgraf, J., Knigge, T., Weise, D., Sqalli-Houssini, O., and Kemper, D.: 

Geostationary Emission Explorer for Europe (G3E): mission concept and initial performance 

assessment, Atmos. Meas. Tech., 8, 4719–4734, doi:10.5194/amt-8-4719-2015, 2015. 

ESA Project SMARTCARB: SMARTCARB – Use of satellite measurements of auxiliary 

reactive trace gases for fossil fuel carbon dioxide emission estimation, Documentation of 

deliverable data1 of ESA study contract n°4000119599/16/NL/FF/mg, v0.1, 2018 

ESA: Copernicus CO2 Monitoring Mission Requirements Document, EOP-SM/3088/YM-ym, 
v2.0, 2019 

Kuhlmann, G., Broquet, G., Marshall, J., Clément, V., Löscher, A., Meijer, Y., and Brunner, D.: 
Detectability of CO2 emission plumes of cities and power plants with the Copernicus 
Anthropogenic CO2 Monitoring (CO2M) mission, Atmos. Meas. Tech., 12, 6695–6719, 
https://doi.org/10.5194/amt-12-6695-2019, 2019. 

Manders, A. M. M., Builtjes, P. J. H., Curier, L., Denier van der Gon, H. A. C., Hendriks, C., 
Jonkers, S., Kranenburg, R., Kuenen, J. J. P., Segers, A. J., Timmermans, R. M. A., 
Visschedijk, A. J. H., Wichink Kruit, R. J., van Pul, W. A. J., Sauter, F. J., van der Swaluw, E., 
Swart, D. P. J., Douros, J., Eskes, H., van Meijgaard, E., van Ulft, B., van Velthoven, P., 
Banzhaf, S., Mues, A. C., Stern, R., Fu, G., Lu, S., Heemink, A., van Velzen, N., and Schaap, 
M.: Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model, Geosci. Model 
Dev., 10, 4145–4173, doi:10.5194/gmd-10-4145-2017, 2017. 

Meirink, J., Eskes, H., and Goede, A.: Sensitivity analysis of methane emissions derived from 

SCIAMACHY observations through inverse modelling, Atmos. Chem. Phys., 6, 1275–1292, 

doi:10.5194/acp-6-1275-2006, 2006. 

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, 
J. B., Bruhwiler, L. M. P., Pétron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., 
Randerson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An atmospheric perspective 



C0
2 
HUMAN EMISSIONS 2020  

 

D2.5 Synthetic satellite datasets  21 

on North American carbon dioxide exchange: CarbonTracker, Proc. Natl. Acad. Sci. (USA), 
104, 18 925–18 930, doi:10.1073/pnas.0708986104, 2007. 

Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell, N. C., Zhang, X., 
Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, 
M., Doll, C., d’Entremont, R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D.: First operational 
BRDF, albedo nadir reflectance products from MODIS, Rem. Sens. Envir., 83, 135–148, 
doi:10.1016/S0034-4257(02)00091-3, 2002. 

Schaaf, C., Z. Wang: MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref 
Daily L3 Global - 500m V006, distributed by NASA EOSDIS Land Processes DAAC, 
doi:10.5067/MODIS/MCD43A4.006, 2015. 

Schepers, D., aan de Brugh, J., Hahne, P., Butz, A., Hasekamp, O., and Landgraf, J.: 
LINTRAN v2.0: A linearised vector radiative transfer model for efficient simulation of satellite-
born nadir-viewing reflection measurements of cloudy atmospheres, J. Quant. Spectrosc. 
Radiat. Transfer, 149, 347–359, doi:10.1016/j.jqsrt.2014.08.019, 2014. 

SRON: Orbit simulator, Technical note, SRON-CSS-TN-2016-01, v0.2, 2017 

Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., 

Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold, A.: The aerosol-

climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, doi:10.5194/acp-5-1125-

2005, 2005. 

Strandgren, J., Bugliaro, L., Sehnke, F., and Schröder, L.: Cirrus cloud retrieval with 

MSG/SEVIRI using artificial neural networks, Atmos. Meas. Tech., 10, 3547–3573, 

doi:10.5194/amt-10-3547-2017, 2017. 

Strandgren, J., Krutz, D., Wilzewski, J., Paproth, C., Sebastian, I., Gurney, K. R., Liang, J., 

Roiger, A., and Butz, A.: Towards space-borne monitoring of localized CO2 emissions: an 

instrument concept and first performance assessment, Atmos. Meas. Tech. Discuss., 

https://doi.org/10.5194/amt-2019-414, in press, 2020. 

 

 

  



C0
2 
HUMAN EMISSIONS 2020  

 

D2.5 Synthetic satellite datasets  22 

Document History 

Version Author(s) Date Changes 

V0.1 Johan Strandgren 
(DLR) 

03/03/2020 First draft 

V0.2 Johan Strandgren 
(DLR) 

10/03/2020 New figures as a 
result of new model 
(AOT) data being 
provided. The 
parameterization 
was tuned. 
Corresponding text 
and figure (Figure 2) 
was updated 
accordingly. General 
improvements of the 
text, also taking 
comments from 
project partners into 
account. 

V0.3 Johan Strandgren 
(DLR) 

30/03/2020 The number of 
simulated orbits was 
added. Document 
was revised based 
on reviewer 
comments from 
JRC. Instances with 
‘CO2’ were replaced 
with ‘CO2’. Added 
new section about 
data access. 

V1.0 Johan Strandgren 
(DLR) 

21/04/2020 Final version after 
review 

 

Internal Review History 

Internal Reviewers Date Comments 

Greet Janssens-Maenhout 
(JRC) 

26/03/2020 Approved with comments 

 

Estimated Effort Contribution per Partner 

Partner Effort 

DLR 4.5 

Total 4.5 

 

This publication reflects the views only of the author, and the Commission cannot be held responsible for any use 
which may be made of the information contained therein. 


