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1 Executive Summary 

This report defines the necessary components for a multi-scale and multi-species data 
assimilation (DA) system that targets anthropogenic CO2 emissions. This DA system will use 
multiple streams of observations, including satellite observations. Out of the many viable 
options to serve as the basis for such a system on the global scale, we see a hybrid 4d-VAR-
ensemble approach, implemented in an online transport model, and operated within a 
Numerical Weather Prediction environment, as a fundamental building block. On top of this a 
DA system should use multiple tracers, be adoptable to long- and short windows, and optimize 
both the atmospheric state as well as surface fluxes.  

Such a system does currently not yet exist, and we recommend a number of concrete research 
and development needs, including to: 

- Allow mass-conserving transport in the operational Integrated Forecast System (IFS) 
of ECMWF 

- Improve the treatment of background covariances and building of long-window 
information transfer in the IFS DA system 

- Develop Fossil Fuel DA models and capacity (FFDAS) for global and regional scales 
- Expand Biospheric Carbon Cycle DA models and capacity (CCDAS) for global and 

regional scales 
- Invest in multi-tracer transport+source modelling on all scales 
- Improve the seamless coupling of regional DA systems to the global IFS 
- Investigate plume-based methods for fast DA, also in a plume-in-grid approach 

Many of these developments are ongoing in the community and to facilitate their uptake in an 
MVS for anthropogenic CO2, we see an important role for:  

(a) a prototype MVS built around the IFS and focusing on available high-resolution CO 
and NO2 satellite data 

(b) a multi-scale integration tool that allows local- and regional scale DA systems to feed 
into the global analyses.  

 

 

2 Introduction 

2.1 Background  

The CHE prototype aims at building a system to monitor the exchange of CO2 and potentially 
other important man-made greenhouse gases like CH4 between the Earth surface and the 
atmosphere with the use of observations (mostly in the atmosphere), models and prior 
information, as well as their uncertainties to leverage the different sources of information. The 
system is designed to support the Paris Agreement and follows the directive of the European 
Commission CO2 Task Force (Pinty et al., 2017). The general strategy and rationale for the 
CHE prototype is provided in CHE D5.9, stemming from the discussions in the first WP5 
workshop (Reading, 25-26 September 2019). The main challenges in the approach are: 

• Multi-scale approach to monitor emission from point sources (power stations or 

industrial facilities), cities and countries using different model domains from global, 

regional to local and model resolutions (e.g. from 25km to 100m). 
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• Multi-species approach to detect and attribute the observed atmospheric signal to 

specific sources/sinks (e.g. natural and anthropogenic emissions with sectorial 

distribution). 

• Multi-stream approach to support different applications and users with a near-real 

time stream focusing on shorter synoptic timescales designed to provide early 

warnings and giving feedback to data producers, and a re-analysis stream that uses 

consolidated quality-controlled data, products and models with their individually 

associated uncertainties to estimate trends. 

 

This report focuses data assimilation methodology linking with on the modelling and prior 
components of the prototype (D5.3) and the Earth observations (D5.1). Data assimilation 
methods can also support uncertainty estimation as posterior error estimation, although a 
complete consideration of uncertainties is covered by a dedicated report deliverable (D5.7).  

The use of atmospheric measurements to constrain CO2 exchange processes with the Earth 
surface is called the “source inversion problem”. More specifically, within CHE we are 
interested in constraining anthropogenic CO2 emissions. Anthropogenic emissions are 
generally confounded by CO2 exchange with the biosphere and oceans on scales larger than 
individual point sources. Separation of the different exchange processes requires (1) the use 
of additional constraints from other trace gases (e.g. NO2, CO, 14CO2, and further observations 
like that of sun-induced fluorescence (SIF) and other human activity proxies) (2) a multi-scale 
approach to separate the anthropogenic hotspots from regional and global exchange with the 
biosphere and oceans. 

Several data-assimilation (DA) methods are being employed to solve the source inversion 
problem considering different options for the optimal assimilation time-window, to trade-off 
computational pragmatism with model errors and with observational constraints. Two of the 
most widely employed techniques are 4-dimensional variational data-assimilation (4D-Var) 
and the Ensemble Kalman Filter approach (EnKF). Both approaches start with a statistical 
description of a state-vector. This state-vector x commonly describes the CO2 exchange fluxes 
and the associated error structures. Propagation of this state-vector using an atmospheric 
transport model produces simulated observations (CO2 mixing ratios, satellite columns, etc.) 
which are compared to atmospheric observations. Again, using proper error statistics 
(measurement errors, model errors) a cost function J(x) is defined which quantifies the 
goodness-of-fit with the observations (Tarantola, 2005).  

 

J(x) = ½ (x– xb)T B-1 (x-xb) + ½ (H(x)-y)T R-1 (H(x)-y)            (1) 

 

Here, x represents the state to be optimized and xb represents the prior information. H(x) 
represents the simulated observations for state x, and y are the observations. B and R are 
the matrices that represent the error statistics of the state x and of the model-data comparison.  

In subsequent steps, which are different for 4D-Var and EnKF, the cost function is minimized. 
The 4D-Var method uses an adjoint model to calculate the gradient of J w.r.t. x, and to 
iteratively run the model forward and backward in time, while the EnKF approach spans the 
uncertainty in x by an ensemble that is run forward in time in a sequential time-stepping mode. 
Table 1.1 summarizes the most important pros and cons for 4D-Var and EnKF. 
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Table 1: Accuracy, Computational and Maintenance pros and cons of 4D-Var and EnKF data 
assimilation methods. 

Data 
Assimilation 
methods 

4D-Var EnKF 

Accuracy (+) accurate solution possible (-) noise-generation for restricted 
ensemble size 

Computational 
Cost 

(-) poorly scalable on multiple 
core computers 

(+) scalable on multiple core 
computers 

Maintenance 
Cost 

(-) adjoint code needed (+) no adjoint code needed 

 

The main weakness of EnKF algorithms resides in the low-rank nature of the error covariance 
matrix represented by the ensemble. Two techniques are commonly employed to mitigate the 
resulting sampling noise: inflation of the ensemble error variance, and localization of the 
impact of observations on the analysis (Houtekamer and Mitchell, 2005; Anderson, 2009). 
Recently, there has been a growing interest in hybrid approaches to DA, leveraging 
advantages of both ensemble and variational methods. In this report we describe in detail the  
possible DA configurations, based on variational, EnKF and hybrid ensemble-variational 
approaches, that can be used to build a prototype CO2 source inversion system. 

Past efforts in CO2 DA have mostly focused on the uncertain biosphere and ocean fluxes. 
Constraining anthropogenic emissions therefore requires a DA system that considers these 
natural fluxes, but also needs to start from a proper quantification of the anthropogenic fluxes: 
the so-called bottom up inventories. These inventories are currently derived from proxies like 
fossil fuel use and activity data, which are not available instantly as required for an operational 
system. Multiple solutions are investigated (e.g. within CHE) that entail an anthropogenic 
emission model that is driven by proxies such as night-lights, temperature, etc. This is similar 
to approaches that use biosphere models to calculate the expected exchange of CO2 with the 
biosphere. In combination with DA methods, these approaches are generally called FFDAS 
(fossil-fuel data-assimilation) and CCDAS (carbon cycle data-assimilation), and here the 
traditional gridded flux-state x is replaced by parameters that drive the biosphere and/or 
anthropogenic emission models. 

Another major uncertainty in traditional flux inversions is the quantification of the errors that 
are associated with atmospheric transport. Ideally, flux inversions are performed with a 
transport model that accounts for transport errors (e.g. by propagating an ensemble that 
accounts for uncertainties in fluxes and transport), but traditional approaches account for 
transport errors on the right-hand side of the cost function (in the R matrix). 

Within CHE, multiple challenges for a DA system targeting anthropogenic CO2 emissions are 
addressed. Such a system should quantify anthropogenic emissions at the scale of individual 
hot-spots and countries, but also need to account for CO2 exchange with the biosphere and 
ocean at global scales. Like mentioned above, separation of anthropogenic and natural CO2 
likely requires a multi-scale and multi-species approach, both in modelling and in observations. 
Candidate tracers that are linked to anthropogenic CO2 are NO2, atmospheric potential oxygen 
(APO), CO and 14CO2 (CO2 produced by burning fossil fuels is void of 14C). Some of these 
tracers are chemically reactive and require consideration of atmospheric chemistry and 
surface processes like fractionation. 

The multi-scale aspect refers to the need to quantify emissions from hotspots like large power-
plants. Large CO2 emitting facilities make up a substantial fraction of the global fossil CO2 
emissions, but are poorly represented in global models. Therefore, a multi-scale and multi-
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model DA approach is necessary to provide CO2 emission products that are relevant for 
environmental decision-making. 

In this report we propose solutions to build a CO2 Monitoring and Verification Support (MVS) 
capacity that integrates information on CO2 emissions from a wide range of spatial and 
temporal scales. 

 

2.2 Scope of this deliverable 

2.2.1 Objective of this deliverable 

This deliverable defines the necessary components for a multi-scale and multi-species DA 
system that targets anthropogenic CO2 emissions using multiple streams of observations, 
including satellite observations. 

 

2.2.2 Work performed in this deliverable 

The work benefitted from the CHE Work-package 1 developments. 

 

2.2.3 Deviations and counter measures 

Not applicable. 

 

3 Data Assimilation components 

 

3.1 Assimilation Methods 

The following table presents a number of state-of-the art global/regional DA systems. Specifics 
of the systems are given below. The table presents the observation operator H, which can be 
offline (using stored meteorological fields) or online (atmospheric dynamics is solved along 
with the flux inversion); the control vector x, which can contain fluxes, the initial state, and 
meteorology (for online H); characteristics of the error matrices B and R; and the most 
important benefits and downsides.  

Table 2: Assimilation methods and their components: Observation operators, Control 
vectors, Background and Observation error covariance matrices, and pros and cons. This 
table refers to atmospheric transport enabled systems, while a more comprehensive list is 
provided in Section 3. 

Method 

(examples) 

Observati
on 
operator 
H 

Control 
vector x 

B R Pros (+) Cons (-) 

Offline 
4DVAR 

 

(CAMS) 
Chevallier et 
al 2019 & 
Rödenbeck et 
al., (2005) 

Offline 
transport + 

Tangent 
Linear/Adj
oint 
(TL/AD) 

Fluxes, 
initial 
conditions 

Static 
model  

Transport 
model 
error + 
measurem
ent error  

Long window 
(years-
decades) 
facilitates 
mass 
conservation, 
implicit full 
rank 
propagation 

Uncoupled 
data 
assimilation
, transport, 
TL/AD 
required, 
error 
characterisa
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of error 
statistics 

tion is 
challenging 

Online 
4DVAR 

(IFS) 

(Agusti-
Panareda et 
al., 2016) 

Online 
transport 

TL/AD 

Fluxes, 
initial 
conditions 
and meteo  

Static 
or 
hybrid 
model  

Measurem
ent error 

Coupled data 
assimilation 
(meteo,flux), 
transport 
error implicitly 
accounted 
for. 

Short 
window 
(strong non-
linearities), 
TL/AD 
required 

Online EnKF 

(Environment 
Canada 
GEMS) 

Online 
transport 
model 

Fluxes, 
initial 
conditions 
and meteo  

4D-
ensem
ble 

Measurem
ent error 

No TL/AD 
required, 
transport 
error implicitly 
accounted for  

Short 
window, 
sampling 
noise 

Offline EnKF 

(CarbonTrac
ker) 

Offline 
transport 
model 

Fluxes, 
initial 
conditions 

4D-
ensem
ble 

Transport 
error + 
measurem
ent error 

No TL/AD 
required 

Limited 
window, 
sampling 
noise 

Offline 
analytical 

(CHE 
regional) 

Offline 
transport 
model + 
Full 
Jacobians 

Fluxes, 
initial 
conditions 

Static 
model 
or 
matrix 

Transport 
error + 
measurem
ent error 

Exact 
solution 

Limited size 
of x and/or 
observation
s 

Online 
Hybrid 

Ensemble 
variational 

(IFS, 
Bousserez,  
tech memo) 

Online 
transport 
model + 
TL/AD  

Fluxes, 
initial 
conditions 
and meteo 

4D-
ensem
ble + 
TL/AD 
propag
ation 

Measurem
ent error 

Coupled DA+ 
long window 
+transport 
error implicitly 
accounted for 
+potential to 
include 
processes 
missing from 
TL/AD  

TL/AD 

 

At this stage, it is useful to introduce a distinction between systems that, in analogy to weather 
prediction, predict the greenhouse gas emissions and distribution: Numerical Weather and 
Greenhouse gas Prediction (NWGP) systems, and systems that re-analyse the emissions 
using full knowledge of the entire system (e.g. measurements made in a ground network, 
fossil-fuel use statistics, ..): Numerical Weather and Greenhouse gas reanalysis systems 
(NWGR). Systems like the CAMS system and Carbontracker fall in this latter category, while 
the online systems are NWGP systems. 

 

3.1.1 Offline 4DVAR  

Finding the minimum of the cost function J (equation 1) involves iteratively progressing 
towards the solution with some optimization software and preconditioning strategy. At each 
iteration, the following gradient indicates the descent direction:  

∇xJ(x)=B−1(x−xb)+ HTR−1(H x − y)                                                                                  (2) 

The advantage of such a formulation lies in the fact that all heavy computations (i.e. those that 
involve square matrices) can be prepared beforehand in a generic way: 
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• H is the forward model and normally exists in a computationally tractable form. Note 
that H may be the tangent-linear code of a non-linear model H(x) where all lines have 
been analytically derived once and for all, either automatically or by hand. 

• the right-multiplication of HT with a column vector can be made with the adjoint code 
of H where all lines have been analytically derived and transposed once and for all, 
either automatically or by hand. 

• B can be designed in such a way that its inverse is numerically convenient, for instance 
through singular value decompositions and Kronecker products of correlation matrices 
in space and time. 

• R is usually considered to be diagonal. Its potential non-diagonality is the main difficulty 
of the variational approach, but some solutions exist on a case-by-case basis (e.g., 
Chevallier 2007).  

This approach has been designed to get the mode of the posterior distribution of x. It also 
gives access to the first eigenvectors of the inverse of the covariance of this posterior 
distribution (Fisher and Courtier, 1995), but if the eigenvalue spectrum converges slowly, this 
information is of little use (Chevallier et al., 2005). Alternatively, ensembles of variational 
inversions can be designed to reconstruct the posterior distribution of x (Chevallier et al., 
2007). 

For atmospheric inversion (where H is mainly a transport model, or a linearized version of it), 
the target surface fluxes include the time dimension directly in the control vector x, while for 
the 4D-Var systems designed for Numerical Weather Prediction (next section), the control 
vector is mainly the state of a model at the initial time step, the later states being obtained 
through the transport model. We therefore refrain from calling 4D-Var the former, in order to 
account for the different nature of the estimation problem. However, with the future Copernicus 
CO2 support service, the two approaches may merge together in a single system, with equal 
importance given to the initial state of the atmosphere and to the surface boundary conditions. 
Examples of current variational global atmospheric inversion systems are CAMS (Section 
3.4.2) and Jena-Carboscope (Rödenbeck, 2005).  

 

3.1.2 Online 4DVAR  

An online 4D-Var system consists in allowing the variational system described in 3.1.1 to 
optimize jointly emissions with meteorological variables. In that context the control vector and 
its associated B matrix includes both the CO2 emissions and prognostics meteorological 
variables of the numerical weather prediction system, and the forward model H(x) corresponds 
to the integration of the equations of motion of the atmosphere together with the transport of 
atmospheric tracers after emissions (e.g., CO2). Such a system presents several advantages. 
For instance, it implicitly accounts for model transport errors associated with uncertainties in 
initial meteorological conditions. It also enables transport adjustment based on observed CO2 
concentrations in a statistically and dynamically consistent manner. One disadvantage of such 
technique is the cost associated with the non-quadratic minimization of the variational cost 
function, as well as the need to define a short assimilation window to mitigate the effect on 
non-linearities on the convergence performance of the algorithm (i.e., the presence of multiple 
minima can severely hamper the efficiency of the variational optimization). 

 

3.1.3 Online EnKF  

In the papers of Kang et al. (2012) and Liu et al. (2016) a Local Ensemble Transform Kalman 
Filter (LETKF) DA system for the combined atmospheric state (weather and CO2 mole 
fractions) and surface flux (CO2) was demonstrated. Using a DA window of only 6-hours and 
an observation network representing a GOSAT + AIRS unbiased satellite view, they were able 
to retrieve detailed surface fluxes successfully over time-scales of a few days, for a full year. 
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An important role was played by the background error covariance matrix: it evolved 
dynamically because of the full atmospheric state, and contained covariances between the 
weather variables (specifically winds), and transported CO2 mole fractions, allowing for 
updates to the CO2 mole fractions based on extensive weather observations. In turn, error 
covariance between CO2 mole fractions and CO2 fluxes allowed the update of fluxes across 
all spatial scales contained in the background covariance. This effectively was the synoptic 
scale (high- and low-pressure areas and associated fronts), thus projecting local CO2 
observation information out to scales much larger than covered in the DA window. Tests 
presented in 2012 were done at coarse atmospheric transport and flux resolution (T32). In 
recent years, Environment and Climate Change Canada has worked to develop a similar 
capacity (Polavarapu et al., 2016), based on the GEM-MACH-GHG DA system at 0.9 degrees 
global resolution.  

 

3.1.4 Offline EnKF  

The offline ENKF for carbon flux estimation was introduced in Peters et al. (2005), where the 
offline component refers to both (a) transport in the observation operator, and (b) propagation 
of the state vector. In this type of application, the observation operator is a full atmospheric 
transport model to turn CO2 fluxes into simulated mole fractions, driven by offline archived 
mass-fluxes from a parent model. This approach is efficient because offline transport 
modelling is a convenient way to reproduce atmospheric tracer transport, without the need to 
solve the full Navier-Stokes equations nor for full data assimilation of observed weather. This 
allows mass-conserving advection schemes, including two-way nesting, to be used within a 
large ensemble (N>100). Moreover, it facilitates large DA windows of several weeks that are 
impossible in an online DA system. Large windows in turn can include explicit transport 
between fluxes and mole fractions over large scales, reducing the dependence on a statistical 
representation of the covariance matrix that is typical for the online systems. A downside of 
this approach is that propagation of transport errors, as well as of background covariance is 
not done with a physical state model, but rather with a simple now-casting. This limits the 
power of the ENKF to improve the state estimate over many consecutive cycles. Like the 
online ENKF, this approach offers an alternative to the explicit representation of the relation 
between local CO2 mole fractions and surface fluxes (i.e. transport Jacobians), which in the 
community had been leveraged in atmospheric inversions with windows ranging from weeks 
to years. 

3.1.5 Offline analytical  

In the presence of Gaussian probability density functions and of a linear forward model, it can 
also be shown that the most likely values of the control variables can be expressed as: 

xa = xb + B H T(H B H T + R) −1 (y – H xb)                                                                  (3) 

or equivalently as: 

xa = xb +(H TR−1H +B−1) −1 HTR−1 (y – H xb)                                                               (4) 

Similar expressions exist for the error covariance matrix of xa (Tarantola, 2005). 

Depending on the respective dimension of x and y, one may prefer one of the two equivalent 
formulations. However, in both cases, square matrices have to be multiplied together and one 
intermediate square matrix needs to be inverted. The way that H is used also suggests that it 
has to be stored as a (potentially large) Jacobian matrix before the computation.  

Atmospheric inversions have used this approach a lot in the past (e.g., Gurney et al., 2002) 
until the need for higher resolution inversions (large x) assimilating time series of in situ or 
satellite observations with little averaging (large y) made the computation of H problematic. Its 
algorithmic simplicity and its efficiency, after H has been obtained, make it still interesting for 
some applications, like Observing System Simulation Experiments (as is done in WP3 and 
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WP4 of CHE, or, e.g., in Bousquet et al., 2018). Note that H can be obtained in a parallel way 
by repeated runs of the tangent-linear or adjoint codes of H, or by finite-differences 
perturbations of H, or by finite-differences perturbations of H, or using Lagrangian transport model 
(e.g., Pisso et al., 2019). 

 

3.1.6 Online Hybrid Ensemble Variational 

An online hybrid ensemble-variational system has been proposed to implement an efficient 
joint state/source DA system in the IFS, that would allow to both extend the current operational 
12-hour assimilation window and to include chemical mechanisms in the variational 
minimization algorithm (currently only the transport and physical processes are included in the 
TL/AD for CAMS). The method is based on: 1) hybridization of ensemble information with full-
rank statistical modelling by combining an ensemble-based increment with an adjoint-based 
increment propagation, allowing one to increase current spatial resolution and/or include 
forward model processes missing from the adjoint integration (for instance, chemical reactions 
and processes); 2) combination of tangent-linear and adjoint solvers with ensemble-based 
least-square approximations of transport Jacobians to construct a long-window 4D-Var with 
timescales relevant to greenhouse gas source inversion. The proposed methodology is non-
intrusive in the sense that the main structure of the current IFS incremental 4D-Var algorithm 
remains unchanged, while the additional computational cost associated with the source 
inversion component is minimized.  This methodology is described in detail in Bousserez  
(2019) [Tech Memo]. 

 

3.2 Control Vector Configuration  

The control vector x of a DA system plays a very important role. It needs to be balanced 
between the desired detail of information needed, and the observational density available to 
constrain the problem, while avoiding aggregation errors. To estimate anthropogenic (and 
biogenic) CO2 fluxes a number of choices have demonstrated to be successful, being (i) direct 
flux estimation on a grid, (ii) estimation of model parameters that control the fluxes, and (iii) 
joint estimation of atmospheric CO2 state and fluxes.  

Whereas (i) offers a reanalyses of the variable targeted for interpretation, (ii) offers a better 
compromise between observational capacity and the number (and nature) of the unknowns, 
while (iii) allows atmospheric transport patterns to be included in the background covariance 
which allows efficient spatial extrapolation of local results. Each of these approaches has been 
used in published applications, however, they have not, or very scarcely, been applied to 
estimating anthropogenic CO2 emissions. Option (iii) is also least developed scientifically 
because of the large task involved in DA of full atmospheric states, and thus the need to have 
a NWP centre involved. Some of these properties are summarized in the table below, followed 
by a more explicit description of the type of flux representations possible. 

 

Table 3: Choice of control vectors for surface emissions and their pros and cons. 

Control Vector 
Choice 

Description of 
state 

Pros (+) Cons (-) 

Direct flux 
estimation 

Each emission 
represents an 
unknown in a 
gridded structure 

+ Most direct path to 
target variable, least 
assumptions 

- No process 
information, requires 
dense observational 
network 
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Parameter 
optimization 

Underlying 
unknowns in a 
dynamic model that 
generates CO2 
fluxes 

+ Efficient interpolation 
of observations to 
smaller scales 

+ extra observable 
information can be 
added (e.g., energy, 
traffic, and consumer 
statistics) 

+ Dependency between 
weather and CO2 
exchange can be 
leveraged 

- Model structural 
errors need to be 
handled 

- Propagation of model 
parameters often non-
physical 

 

Joint 
atmospheric 
state and 
flux/parameter 
optimization 

The 4D structure of 
the atmospheric 
CO2 field is 
optimized along 
with the underlying 
emissions of CO2 

+ Representation of 
large-scale atmospheric 
structures in 
background covariance 
possible 

+ Allows short-windows 
through statistical 
relation between fluxes 
and mole fractions 

- Requires full NWP 
setting, only a few 
groups can deliver 

- Mass-conservation 
can be difficult to 
maintain 

- Approximation of 
large background 
covariance structure 
with small ensemble 
number, how well does 
it work? 

 

 

Generally, there is consensus that to estimate anthropogenic emissions from satellite 
observations, the state vector needs to keep track of the full atmospheric 4D mole fractions of 
CO2, but also contain information about auxiliary tracers and their relation to the emissions. 
Because anthropogenic emissions will occur at scales below those resolved by the global 
transport models we employ (at least for the next decade), it is also likely that we need them 
to be represented not as individual flux elements, but as the result of a dynamical model that 
generates emission estimates based on activity data (also observable), emission factors 
(measurable), and variations in driver data (temperature, wind, solar radiation). In that case it 
is also important to include a bias correction term to account for structural model errors. 
Currently, the optimal stratification in space/time of model parameters is not yet known, but 
being investigated in projects such as VERIFY. 

 

3.2.1 Direct flux estimation (NWGR) 

When fluxes are placed in the state vector, each element either needs to be observed directly, 
or its value must be inferred from nearby flux elements that have a co-varying error, as carried 
in the background error covariance matrix. Typically flux error covariances only span a small 
spatiotemporal scale though (Chevallier et al., 2007) leaving many degrees of freedom. 
Because fluxes often change rapidly over time (diurnal cycles of for example traffic emissions, 
heat generation, and biosphere fluxes) this challenge becomes even larger. Moreover, the 
representation of anthropogenic emissions, often small point sources, is difficult in a global 
model with 5-10 km resolution, rendering direct flux estimation for anthropogenic emissions 
impractical. Since this approach has a very long history in the inverse modelling community 
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that came from continental scale and annual flux estimates, much experience was built around 
this concept in the last two decades. 

3.2.2 Dynamic biosphere flux description model for CCDAS (NWGP, NWGR) 

An example of this building block is VPRM or another simple model that feeds off NWP 
weather variables and/or easily available remote sensing data (LAI, faPAR, SIF, NIRv, 
NDVI,…). It provides the biosphere exchange at the surface and focuses on the shorter time 
scales where weather variations cause much of the variability that manifests itself nearly as 
“noise” for the data assimilation problem. Since this noise is not observable everywhere all the 
time, the CCDAS allows this to be captured by tuning simple model parameters across space 
and time. Examples are the light-use efficiency of plants, or the water-use efficiency, or the 
stomatal VPD-response, or the Q10 factor for respiration. Since these can vary stochastically 
and respond to the NWP variables, both noise and uncertainty can be captured in CCDAS, 
and moreover the forecast-analysis cycle of NWP allows for updates to the model over time. 
For NWGR, this biosphere exchange model could include longer relevant time scales of weeks 
to perhaps even decades. An important challenge is to propagate information for time-varying 
parameters  through consecutive states, as needed for the DA system: the lack of a dynamical 
model with realistic error (growth and propagation) puts limits on our ability to keep meaningful 
structures in space/time, which are needed for the envisioned statistical methods in the hybrid 
ensemble-variational system to work. For more sophisticated surface flux models, initial 
values for example for carbon pool sizes can furthermore be included in the state.  Examples 
of recent CCDAS efforts include: Koffi et al., 2012, Santaren et al., 2014, Kaminski et al., 2017 
(within CHE).  

3.2.3 Dynamic anthropogenic flux description model for FFDAS (NWGP, 
NWGR) 

Similar to the CCDAS, the FFDAS model provides anthropogenic surface fluxes as a function 
of weather variables from the NWP, as well as other recorded variables such as activity of 
traffic, power plants, ships, or industry over space and time. The relation between activity and 
emissions can then be optimized, and is a relevant variable that relates directly to the 
uncertainties also in national emission reports. Since the underlying parameters can vary 
stochastically and respond to the NWP variables, both noise and uncertainty can be captured 
in FFDAS, and moreover the forecast-analysis cycle of NWP allows for updates to the model 
over time. For NWGR, this anthropogenic exchange model could include longer relevant time 
scales of weeks to perhaps even decades. Auxiliary remote sensing data such as NO2 and 
CO columns or nightlight data can furthermore be incorporated readily in this system.. 
Examples of recent FFDAS efforts include: Brophy et al, (2018) , Super et al. (2019), Asefi-
Najafa et al. (2014). 

3.3 Error Covariance Statistics 

Uncertainty representation needs to be carefully considered in the operational prototype. Two 
critical components of the inversion systems are the prior error covariance and transport (or 
forward model) error covariance matrices.  

Prior flux uncertainties will be first based on the available knowledge from state-of-the-art 
bottom-up inventories. However, given the high level of uncertainty in those estimates, further 
adjustments for the prescribed prior error covariance matrix will be needed. In particular, flux 
error correlations are poorly known in current bottom-up inventories. Within CHE, we will 
leverage available wavelet-based modelling tools in the IFS to construct an efficient model for 
the prior error covariance matrix that can account for spatially heterogeneous error correlation 
structure. The parameters of this B matrix will be optimized based on observed CO₂ 
atmospheric concentrations, using standard high-dimensional adjoint-based optimization 
techniques. 
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In the CC-FF-DAS approach uncertainty on the model parameters must be based as much as 
possible on the error structure of the underlying data. This consists of (a) Activity data (traffic 
counts, energy demand, population and livestock density, productivity of factories, etc), and 
(b) the transfer parameters from Activity to emissions (emission factors, emission ratios, 
temporal profiles, etc). The latter are often based on literature and laboratory measurements 
(for vegetation) or from laboratory and in-situ measurements (e.g., emission factors of coal 
burning).  An important aspect mentioned in Table 3 is that both (a) and (b) can be weather-
dependent: total energy consumption depends on outside temperature, the need for fossil 
energy depends on the availability of wind and sunlight for renewable, but also emission 
factors of traffic are temperature-dependent (cold starts). This means that the B matrix can 
have covariances between such NWP variables and anthropogenic & natural fluxes.  

The transport error covariance matrix will be estimated through the use of ensemble 
information within a Monte-Carlo framework (McNorton et al., submitted).  However, such 
estimations are associated with the forward model parameters uncertainty, and several, non-
parametric, additional sources of transport errors remain. Therefore, additional benchmarking 
based on high-resolution model simulations and in situ comparisons will be necessary to 
capture model errors not accounted for by the standard ensemble-based methods. More 
information on the methods to estimate transport error statistics are provided in the CHE WP5 
report on uncertainty quantification (CHE D5.7). 

Finally, due to the large dimension of the inverse problem, an efficient computational approach 
is required to approximate the posterior error covariance matrix and related information 
content diagnostics for the estimated CO₂ fluxes. To this aim, low-rank approximations of the 
posterior error covariance and model resolution matrices will be used as described in the CHE 
WP5 report on uncertainty quantification (CHE D5.7). These can be compared to full-rank 
estimates like provided in the system of Rödenbeck et al. 2005. 

 

3.4 Examples of Existing Inversion Systems 

As referred to several times above, relevant experience with DA systems for CO2 fluxes is 
available in the scientific community, albeit not at the scale targeted with the prototype MVS. 
Below, several of the world-wide acknowledged systems are mentioned in the table, and 
expanded in the text to provide context to the current state-of-the-art. 

Table 4: State-of-the-art data-assimilation systems for Numerical Weather and Greenhouse 
Gas prediction (NWGP) and Reanalysis (NWGR). Important pros and cons are listen 

Name or 
acronym 

NWGP NWGR Details + - 

IFS  ✅ ✅ 12-24 hour 
window with 
propagation 
of 
information 
from outside 
the window, 
demonstrate
d for CO₂ 
atmospheric 
state 

Versatile, 
shared with 
NWP 

Short assimilations window & 
Strong dependence on B-
matrix and small ensemble for 
large scales 

Carbon-
Tracker 

 ✅ Long-
window 
Ensemble 
Kalman 

Explicit 
representatio
ns of 
intermediate 

Max resolution offline and 
CPU- scalability limited. No 
transport errors  
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Smoother 
system, 
demonstrate
d for decadal 
CO₂ flux 
reanalyses 
including 
satellite 
XCO₂ and 
sun-induced 
fluorescence 
(CHE 
outcome) 

scales, mass 
conserving 

CAMS  ✅ Full-window 
4D-VAR 
system, 
demonstrate
d for CO₂ 
flux 
reanalyses 
including 
satellite 
XCO₂ and 
sun-induced 
fluorescence 
(CHE 
outcome) 

Explicit 
representatio
ns of 
intermediate 
+long scales, 
mass 
conserving 

Max resolution offline and 
CPU- scalability limited. No 
transport errors 

Satellite 
Mass-
Balance 
Approach  

✅ ✅ Direct 
estimation of 
point source 
strengths 
from satellite 
images 
using simple 
(mass-
balance, 
CHE 
outcome) 

Direct 
approach 
using limited 
additional 
information 

Emission estimates depend 
critically on wind-speed. 
Complicated for multiple 
sources. 

CC-FF-
DAS 

✅ ✅ Parameters 
from flux 
models are 
optimized 

Allows easy 
coupling to 
NWP 
models, 
enables the 
use of further 
observationa
l constraints 
(SIF, 
FAPAR, 
nightlights, 
activity/cens
us data …)  

Error propagation difficult, 
non-linearity of underlying 
system hard to include in 
Gaussian minimizations 
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3.4.1 CarbonTracker 

The CarbonTracker data assimilation system for CO2 (Peters et al., 2005) was the first of its 
kind to make use of ensembles of fluxes, and the square-root sequential filter described in 
Whitaker and Hamill (2001). Directly from its first launch in 2006, it moreover used a large 
number of global regions (more than 200, later replaced by a gridded state vector) and a 
weekly time step, providing many more degrees of freedom than systems used before. Its 
success in assimilating data from the global CO2 monitoring networks, and especially from 
semi-continuous tower observations contributed to the wide use of its flux products and 
atmospheric mole fractions in the community. CarbonTracker has since forked into two 
development branches, one at NOAA ESRL in the USA, and one in Europe (Peters et al., 
2010) which was later incorporated in the python-based CTDAS shell (Laan-Luijkx et al., 
2017). CT Europe uses 150 ensemble members to represents the spread of a set of ~9000 
linear flux scaling factors across the globe, which are updated every week. Their error 
covariances scale across distance and across terrestrial ecosystem types, reducing the 
weekly degrees of freedom to ~1200. It moreover uses a five-week lagged smoother window 
to allow observations to change scaling factors even at longer travel times of the observed air 
masses. The system is typically run with a highest resolution of 1x1 degree, and covers two 
decades in its reanalysis. The TM5 model, driven by offline mass-conserving and positive 
definite mass-fluxes from the IFS reanalyses (ERA5, and ERA-I) provides transport, and is 
parallelized to scale well up to hundreds of CPUs, making IO of offline fluxes one of its 
computational bottlenecks. 

 

3.4.2 CAMS inversion system 

For 10 years, the operational Copernicus Atmosphere Monitoring Service 
(https://atmosphere.copernicus.eu/) and its precursor projects Monitoring Atmospheric 
Composition and Climate have been analysing CO2, methane and nitrous oxide surface fluxes 
over the recent decades and over the globe by assimilating near-surface or column mole 
fraction observations in global atmospheric chemistry-transport models. In the case of CO2, 
the system minimizes a Bayesian cost function to optimize the 3.75o×1.9o grid-cell eight-day 
surface fluxes over the globe (with a distinction between local night-time fluxes and daytime 
fluxes, but without fossil fuel emissions, that are prescribed) and the initial state of CO2. To do 
so, it assimilates a series of CO2 atmospheric observations over a given time window within 
an off-line version of the global atmospheric general circulation model of the Laboratoire de 
Météorologie Dynamique (LMDz, Hourdin et al., 2013) run at global resolution 3.75o×1.9o and 
nudged towards ECMWF re-analyses The minimization approach is called ‘variational’ 
because it explicitly computes the gradient of the cost function using the adjoint code of LMDz 
(Chevallier et al. 2005). Thanks to a double parallelisation of the transport model (Chevallier 
2013), it allows the inversion window to extend over several decades (currently four) 
seamlessly, while still producing and delivering the CAMS CO2 inversion twice per year. 
Corresponding Bayesian uncertainty statistics are available on request, based on Monte Carlo 
simulations (Chevallier et al., 2007). Prior information about the surface fluxes is provided to 
the Bayesian system by a combination of climatologies and other types of measurement-
driven flux estimates. Assigned prior error variances vary in space and time, and are 
associated to temporal and spatial error correlations. Details can be found in Chevallier 
(2018a). The main CAMS product assimilates near-surface measurements, but a satellite-
driven product is now also available. Details about both products can be found in Chevallier 
(2019). 

 

3.4.3 IFS inversion system 

As part of CHE and preceding efforts a global NWGP system was built, based around the IFS 
model at ~9km spatial resolution. It currently uses a 4D-Var window length of 12-hours, but 

https://atmosphere.copernicus.eu/
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efforts are well underway to adopt a hybrid ensemble-variational method. This will allow 
ensemble information to extend the current operational 12-hour window to past and future 
assimilation windows [Tech Memo N. Bousserez (2019)]. Currently the system has been 
demonstrated to improve the atmospheric state analysis and 10-day forecast of CO₂ 
concentrations, but fluxes have not yet been estimated. CHE ensemble nature runs performed 
with IFS confirm that the signal from the biogenic fluxes is dominant over anthropogenic 
signals in many areas, and at the resolutions being considered. Therefore, it is deemed critical 
to: 1) include the biospheric fluxes or CCDAS parameters in the control vector; 2) consider the 
potential of co-emitters (e.g., NO2, CO) in disentangling the anthropogenic and biospheric flux 
signal. Recommendations for next steps in its development are provided in the next section. 

 

3.4.4 Satellite Mass Balance methods 

Local point-source emissions, or even city-domes, show strongest signals at scales below 
what can be resolved by the global or regional systems. Tailor-made approaches to estimate 
their source strength are needed. Available methodologies include various mass-balance 
approaches, Gaussian plume modeling, Lagrangian dispersion modeling, and increasingly 
also machine-learning techniques. Within a DA framework, such approaches can be used as 
a separate building block to monitor local sources separately, or they can be integrated in the 
parent global IFS system, e.g. as a plume-in-grid-approach. In the latter, each system would 
profit from the two-way interactions of meteorology and concentrations. The point-source 
estimation approach should be scalable from doing a limited (top-N, with N=50-100) number 
of large emitters, to a system where the majority of global (observed) point-sources monitored. 

University of Bremen is developing an inversion system aiming at the quantification of CO2 
emissions from localized CO2 emission sources such as power plants and cities using satellite 
retrievals of column-average dry-air mole fractions of CO2 (XCO2) and NO2 tropospheric 
columns (Reuter et al., 2019). For satellite XCO2 the Level 2 XCO2 product form NASA's 
Orbiting Carbon Observatory-2 (OCO-2) satellite is used. However, regional column-average 
enhancements of individual point sources are usually small, compared to the background 
concentration and its natural variability, and often not much larger than the satellite's 
measurement noise. This makes the unambiguous identification and quantification of 
anthropogenic emission plume signals challenging. NO2 is co-emitted with CO2 when fossil 
fuels are combusted at high temperatures. NO2 has a short lifetime on the order of hours so 
that NO2 columns often greatly exceed background and noise levels of modern satellite 
sensors near sources, which makes it a suitable tracer of recently emitted CO2. Based on six 
case studies (Moscow, Russia; Lipetsk, Russia; Baghdad, Iraq; Medupi and Matimba power 
plants, South Africa; Australian wildfires; and Nanjing, China), Univ. Bremen demonstrated 
the usefulness of simultaneous satellite observations of NO2 and XCO2. For this purpose, they 
analyzed co-located regional enhancements of XCO2 observed by OCO-2 and NO2 from the 
Sentinel-5 Precursor (S5P) satellite and estimate the CO2 plume's cross-sectional fluxes 
taking advantage of the nearly simultaneous NO2 measurements with S5P's wide swath and 
small measurement noise by identifying the source of the observed XCO2 enhancements, 
excluding interference with remote upwind sources. This allows to adjust the wind direction 
and constrains the shape of the CO2 plumes. They compare the inferred cross-sectional fluxes 
with the Emissions Database for Global Atmospheric Research (EDGAR), the Open-Data 
Inventory for Anthropogenic Carbon dioxide (ODIAC), and, in the case of the Australian 
wildfires, with the Global Fire Emissions Database (GFED). The inferred cross-sectional fluxes 
range from 31 MtCO2/year to 153 MtCO2/year with uncertainties (1σ) between 23 % and 72 %. 
For the majority of analyzed emission sources, the estimated cross-sectional fluxes agree, 
within their uncertainty, with either EDGAR or ODIAC or lie somewhere between them. They 
assessed the contribution of multiple sources of uncertainty and found that the dominating 
contributions are related to the computation of the effective wind speed normal to the plume's 
cross section. The flux uncertainties are expected to be significantly reduced by the planned 
European Copernicus anthropogenic CO2 monitoring mission (CO2M), which will provide not 
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only precise measurements with high spatial resolution but also imaging capabilities with a 
wider swath of simultaneous XCO2 and NO2 observations.  

An example of a fast mass-balance method, aided by fine-scale transport modeling, was given 
by Wu et al., (2018), using the column X-STILT Lagrangian dispersion model. In this system, 
the difference between up- and downwind XCO₂ observations (DXCO₂) from OCO-2 was 
projected onto the city in between, using X-STILT footprints. This footprint determined the 
sensitivity of each height represented in the column to the detailed city emission landscape 
below (resolved at high resolution), and thus allowed the DXCO₂ to correctly scale underlying 
emissions.  

 

3.4.5 CCFFDAS 

The Carbon Cycle Fossil Fuel Data Assimilation approach tackles the inverse problem of 
inferring surface fluxes of trace gases through assimilation of atmospheric and other 
observations into process models simulating the surface fluxes. The atmospheric transport 
acts as (part of the) observation operator for the atmospheric observations (Kaminski and 
Mathieu, 2017). The control space can be any combination of process parameters, initial- and 
boundary conditions of these process models and the observation operators. In the weak-
constraint (Zupanski, 1997) setup, deviations from the simulated fluxes are added to the 
control vector (see, e.g., Lewis et al., 2012). Fluxes are then simulated from the posterior 
control vector. Background on the approach is provided, e.g. by Rayner et al. (2010), Kaminski 
et al. (2013), and Asefi-Najafabady et al. (2014). We highlight the following aspects of the 
approach: 

• An appropriate choice of the process models implicitly addresses the attribution to flux 
categories (e.g. sectorial fossil fuel emissions or natural fluxes). 

• The process models can be regarded as a way to bring extra information into the 
assimilation system, in particular if (with appropriate observation operators) they can 
enable the use of further observations (e.g. nightlights, SIF, or FAPAR) or variables 
that are provided by the operational system (e.g. to simulate fossil fuel emissions from 
heating and cooling). 

• The (linearised) process models implicitly provide the uncertainty structure in flux 
space. In this respect the role of the process models is analogous to the role of 
observation operators for lower level EO products, the uncertainty structure of which 
is usually much easier. Residual errors in the process models can be addressed by 
the weak-constraint version. More accurate process model will serve better to remove 
uncertainty from the inverse problem. This is because they provide lower forecast 
residual errors, and thus allow lower prior uncertainties. Owing to the non-linearity of 
the process models, the uncertainty structure in the flux space changes in the course 
of the minimisation (in contrast to the B matrix in an atmospheric inversion that directly 
solves for fluxes).  

A “light” prototype of a global-scale CCFFDAS was developed in the ESA CCFFDAS study 
(http://ccffdas.inversion-lab.com/) based on existing components, i.e. the Fossil Fuel Data 
Assimilation System by Asefi-Najafabady et al. (2014), the Carbon Cycle Data Assimilation 
System by Kaminski et al. (2017), and the Atmospheric Transport model TM3 (Heimann and 
Koerner, 2003). The prototype is being applied in CHE by Lund and iLab to explore design 
choices for the operational MVS. A particular asset is the availability of a full Jacobian 
representation of the modelling chain. The full Jacobian allows, for example, to assess 
approximations of posterior uncertainties in low-dimensional subspaces of the control space. 
A limitation is the coarse resolution of the atmospheric transport (4 by 5 degrees) that is 
currently used, even though an update of this global system to higher resolution is feasible. A 
regional CCFFDAS prototype is currently being developed within the same ESA study. 

 

http://ccffdas.inversion-lab.com/
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4 Recommendations for operational CHE prototype 

★ Details of different configurations/streams can be tested within the next three years to 

address different temporal/spatial scales and user needs 

★ Incremental step to implementation (emphasizing the added value of each step). 

Each scale on which we need to develop a prototype MVS system is associated with different 
configurations, and different needs. These require different, but closely coordinated, 
development strategies.  

 

4.1 Global inversions 

Table 5: Immediate development needs linked to the domain (global) and stream for 
application in the prototype: Numerical Weather and Greenhouse Gas prediction (NWGP) and 

Reanalysis (NWGR). An estimate of the effort required is given in person months. 

Component Domain Stream Recommendation Estimated 
effort 
(Person 
Months) 

IFS Global NWGP Facilitate use of IFS 
model to other partners, 
including capacity to 
“replay” the forecast 
ensemble from EPS 
(online, not through 
static-fields and massive 
I/O)   

12 months 

IFS hybrid 
ensemble-4dvar  

Global NWGP, NWGR Demonstrate joint state-
flux estimation including 
propagation of 
information from outside 
the 12-hour window. 
Assimilate high-
frequency near-real time 
observations from 
satellites and surface 
network. Use OSSEs, as 
well as real-world test 
with CO as tracer. 

9 months 

IFS hybrid 
ensemble-4dvar  

Global NWGP, NWGR Develop long-window 
inversions using a hybrid 
ensemble-variational 
method, estimating joint 
biospheric/anthropogenic 
fluxes in a CC-FF-DAS 
approach.  

  

6 months 

IFS hybrid 
ensemble-4dvar  

Global NWGP, NWGR Through OSSEs, assess 
the requirements, and 
statistical performance of 
the ensemble in the DA 
framework: is the 

6 months 
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linearization good 
enough to allow 
propagation of the state 
across time scales from 
hours-to-weeks? How 
much localization is 
needed and how to apply 
it in space/time? Is the 
low-dimensional (or 
wavelet) representation 
of the B-matrix sufficient 
to assess posterior 
errors? Do these 
methods work for long-
window re-analyses too? 

IFS multi-scale 
assimilation 

Global NWGR Show the feasibility of the 
multi-scale integration of 
a reanalysis with 2-3 
systems (CTE, CAMS, 
IFS) 

 

6 months 

CarbonTracker Global NWGR Build a hybrid long-
window-short-window 
assimilation system, with 
consistent propagation of 
covariances.  

6 months, 
planned 
under CHE 

CarbonTracker Global NWGR Improve numerical 
satellite-assimilation 
capacity to handle larger 
volumes of data.  

2 months 

CarbonTracker Global NWGR Replace offline meteo 
with IFS online 
alternative (+analysis 
replay-mode) 

12 months, 
partly 
started for 
EC-Earth 

CAMS Global NWGR Identify and implement 
innovations to estimate 
anthropogenic fluxes in 
re-analysis mode  

12 months 

CCDAS Global to 
regional 

NWGP, NWGR Identify suitable model, 
and optimizable 
parameters, decide how 
to approach slow 
changes and hysteresis 
in carbon fluxes. Design 
a dynamical model for the 
propagation of the mean 
state and covariance. 
Build TL/AD codes. 

12 months 

FFDAS Global to 

regional 

NWGP, NWGR Identify suitable model, 
and optimizable 
parameters, decide how 

12 months 



C0
2 
HUMAN EMISSIONS 2019  

 

  
D5.5 Progress report on service elements requirements for data assimilation methodology 23 

to approach. Decide how 
to approach point-
sources and integration 
into IFS. Design a 
dynamical model for the 
propagation of the mean 
state and covariance. 
Build TL/AD codes. 

Satellite Data Global NWGP, NWGR Assimilate satellite data 
to estimate emissions. 
Real-case scenarios 
using CO system & 
TROPOMI. Compare 
NWGP and NWGR mode 
and document 
requirements + path 
forward for CO₂. 

8 months 

 

4.2 Regional inversion  

Table 6: Immediate development needs linked to the domain (regional) and stream for 
application in the prototype: Numerical Weather and Greenhouse Gas prediction (NWGP) and 

Reanalysis (NWGR). An estimate of the effort required is given in person months. 

Component Domain Stream Recommendation Estimated 
effort 
(Person 
Months) 

COSMO Regional NWGR Investigate use of 
boundary conditions 
within regional inversions 
capabilities 

6 months 

Testbed for 
components 

Regional NWGR Identify testbed regions, 
invest in interface to 
integrate with NWGP 
and NWGR within 
Copernicus, incorporate 
ICOS resources to 
facilitate continuous 
exchange of information 

8 months 

 

4.3 Local inversions 

 

Table 7: Immediate development needs linked to the domain (local) and stream for application 
in the prototype: Numerical Weather and Greenhouse Gas prediction (NWGP) and Reanalysis 

(NWGR). An estimate of the effort required is given in person months. 

Component Domain Stream Recommendation Estimated 
effort 



C0
2 
HUMAN EMISSIONS 2019  

 

  
D5.5 Progress report on service elements requirements for data assimilation methodology 24 

(Person 
Months) 

Bremen 
approach 

Local NWGR Investigate application 
for CO2M mission 

6 months 

Plume-in-grid Local NWGP, 
NWGR 

Investigate split in state-
vector: large point-
sources are estimated 
separately and merged 
with the NWGP & NWGA 
systems.  

9 months 

Plume 
Chemistry 

Local NWGR Investigate effects of 
non-linear atmospheric 
chemistry on NO2 
lifetime 

6 months 

 

 

5 Research priorities  

5.1 Multi-scale Integration System 

A proposed multi-model system could be used to integrate spatiotemporally heterogeneous 

posterior emission products. This system, outlined by Bousserez (2019,Tech Memo), would 

treat the local and regional posterior flux products as observations in a global IFS-driven CO2 

inversion. In practice, each regional and local inversion outputs to be assimilated in the global 

multi-model product would be required to provide an ensemble of prior and posterior samples 

of 4D CO₂ emissions and CO₂ concentrations fields. In order to avoid any detrimental effects 

from the integration of poorly estimated posterior emissions and/or inaccurately prescribed 

posterior errors on the multi-model product, a strict quality control mechanism will need to be 

implemented. The complexity of assimilating inversion products across different 

spatiotemporal scales in consistent manner may require an efficient integration tool similar to 

CIF (VERIFY), in particular to standardize model inputs/outputs. Within the IFS global model, 

the multi-model assimilation algorithm will be implemented using the modular OOPS DA 

system. 

 

Table 8: Research priorities linked to the domain (global, regional, local) and stream for 
application in the prototype: Numerical Weather and Greenhouse Gas prediction (NWGP) 
and Reanalysis (NWGR). An estimate of the effort required is given in person months. 

Component Domain Stream Recommendation Estimated 
effort 
(Person 
Months) 

Transport Global 
Regional 

NWGP, NWGR Test new transport 
schemes developed 
in NWP, e.g. 
MPDATA advection 
in FVM IFS 
(Kühnline et al, 
2019)  

8 months 
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5.2 Multi-species constraints (NO2, CO, CO2) 

The multi-species constraints are a necessity driven by the CO2 underdetermined data 

assimilation problem, a number of recommendations for future research especially on 

turbulent scales that is largely unchartered territory. 

 

 

 

Table 9: Research priorities linked to the domain (global, regional, local) and stream for 
application in the prototype: Numerical Weather and Greenhouse Gas prediction (NWGP) 
and Reanalysis (NWGR). An estimate of the effort required is given in person months. 

Component Domain Stream Recommendation Estimated 
effort 
(Person 
Months) 

Chemistry for 
Multi-species 
approach 

Global 
Regional 

NRT 
RA 

NO2, CO, VOCs via 
reduced complexity 
models, AI, multi-
tracer approach  

6 months 

Use LES and 
DNS for error 
covariances 
characterisation 

Local/Regional NRT 
RA 

Urban CO2 
distribution for error 
characterisation and 
representativity 

4 months 

 

5.3 Assimilation of satellite data to estimate surface fluxes 

 

 

Table 9: Research priorities linked to the domain (global, regional, local) and stream for 
application in the prototype: Numerical Weather and Greenhouse Gas prediction (NWGP) 
and Reanalysis (NWGR). An estimate of the effort required is given in person months. 

Component Domain Stream Recommendation Estimated 
effort 

One important recommendation for all scales, and all systems, is to start investing in 
multi-species data assimilation. This is based on the recognition that anthropogenic 

CO2 emissions can never completely be constrained with CO2 observations alone, and 
the signal-to-noise of co-emitted species is often much better than that of CO2 (and 

especially XCO2). Global, local, and regional scale DA systems so far have only 
focused on one or two species simultaneously. A large leap is needed. 

Operational weather centers usually focus on the atmospheric state rather than on 
surface fluxes. To gain experience in estimating surface fluxes in the proposed hybrid 
DA system, CO surface flux estimation using S5P TROPOMI data should receive high 

priority   
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(Person 
Months) 

 Assimilation of 
TROPOMI data  

Global 
 

NWGP, NWGA  Use CO as a tracer 
to test the hybrid DA 
system 

8 months 

 

 

 

6 Conclusions  

The specification of the configuration recommended for the data assimilation components at 
different scale is provided following the work done in WP1.   
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