

MATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

EUROPEAN CH₄ EMISSIONS FROM CTE-CH₄ **ATMOSPHERIC INVERSE MODEL**

Aki Tsuruta¹, Janne Hakkarainen¹, Leif Backman¹, Sebastian Lienert², Fortunat Joos², Jurek Müller², Greet Janssens-Maenhout³, Ed Dlugokencky⁴, Michel Ramonet⁵, Juha Hatakka¹, Tuomas Laurila¹, Elena Kozlova⁶, Jost V. Lavric⁷, Janne Levula⁸, Nikos Mihalopoulos⁹, Simon O'Doherty¹⁰, Ray Wang¹¹, Yukio Yoshida¹², Tuula Aalto¹

[1] Finnish Meteorological Institute, Climate Research, Helsinki. Contact: Aki.Tsuruta@fmi.fi

INTRODUCTION

European CH₄ emissions from national reports and estimated from inventories and top-down estimates have discrepancies.

EUROPEAN CH4 EMISSIONS

- 0.6

0.3

0.0

Average total European CH₄ emissions [gCH₄/m²/day]

• European CH₄ emissions are

- There could be missing sources in reported emissions
- Estimates from process-based biospheric models vary much due to e.g. employed peatland distribution map
- We examined European CH₄ emissions using an atmospheric inverse model, CarbonTracker Europe-CH₄ (CTE-CH₄^[3]).
 - Test sensitivity of the inversion to prior fluxes
 - Test sensitivity of the inversion to observations

Carbon Tracker Europe – CH4 model

	Pior		Posterior		
	P1	P2	P1_SURF	P2_SURF	P2_GOSAT
Total	28.1	26.2	29.8	30.3	29.1
Anthropogenic	24.6	21.8	26.1	25.8	24.5
Wetlands + soil sink	3.0	1.8	3.2	1.9	2.0

Table 1: Average European total CH4 emissions for 2010-2016 [Tg CH4 yr]

high in cities due to anthropogenic emissions.

- 0.5 • Posterior total emissions are higher than prior. - 0.4
 - Estimates from inversions agree well despite different inputs.
- 0.2 • Posterior European CH₄ emissions decrease since 0.1 2000.
 - Annual total European CH₄ emissions [gCH₄/m²/day]

2000 2002 2004 2006 2008 2010 2012 2014 2016

• [Total and anthropogenic] Effect of observations are larger than the effect of prior

- Grid-based optimization over Europe
 - 1°x1° horizontal resolution (correlation length = 100-500 km)
 - Weekly temporal resolution
- Anthropogenic priors:
 - (P1) EDGAR v4.2 FT2010^[1]: annual means, but same values for 2012-2017
 - (P2) EDGAR-GCP: annual means, extended to 2017
- **Biospheric priors**
 - (P1) LPX-Bern DYPTOP ecosystem model^[2]: monthly and interannually varying fluxes
 - (P2) Previous GCP-CH4 bottom-up estimates averaged over the models, climatological fluxes

- Differences in posteriors estimates are larger when using different observations (P2 SURF vs P2 GOSAT) than using different priors (P1_SURF vs P2_SURF).
- [Wetlands] Effect prior is larger than the effect of the observations in contrary to the anthropogenic case.

- Wetland estimates are still sensitive to prior fluxes, possibly more due to their location
 - Detecting location of wetland is crucial

- Inversion could be
- further improved with help of atmospheric
- observations or optimizing
- parameters in process-
- based models at the same time

MODEL EVALUATION

- Comparison with TCCON and HIPPO aircraft observations suggest overestimation of European CH₄ emissions when using GOSAT observations
 - Differences in emission estimates cannot alone explain the overestimation.
- Other priors: GFED v4.2 (fire), termites & other microbial sources, geological sources (only in P2), ocean
- Assimilated observations
 - (SURF) High-precision observations from ground-based stations
 - (GOSAT) Dry air total column-averaged CH4 mole fractions, retrieval from GOSAT TANSO-FTS^[4] (NIES v2.72 retrieval)
- Long-range transport is likely to be the cause rather than e.g. effect of local emissions.

PROJECT

GLOBAL CARBON

References:

[1] Janssens-Maenhout, G. et al..: EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970-2012, Earth Syst. Sci. Data Discuss., 2017, 1–55, doi:10.5194/essd-2017-79, 2017. [2] Stocker, B. D.et al.: DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands, Geosci. Model Dev., 7(6), 3089–3110, doi:10.5194/gmd-7-3089-2014, 2014.

[3] Tsuruta, A. et al.:: Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH₄ v1.0, Geoscientific Model Development, 10(3), 1261–1289, doi:https://doi.org/10.5194/gmd-10-1261-2017, 2017. [4] Yoshida, Y. et al.: Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data, Atmos. Meas. Tech., 6(6), 1533–1547, doi:10.5194/amt-6-1533-2013, 2013.