Multi-scale greenhouse gas flux estimation systems in support of Canadian carbon cycle science and policy

Saroja Polavarapu, Felix Vogel, Vikram Khade^{*}, Jinwoong Kim, Michael Neish, Douglas Chan, Dylan Jones^{*} Climate Research Division, Environment and Climate Change Canada, Toronto and *Dept. of Physics, University of Toronto limate Change Canada

CO₂ Human Emissions (CHE) and VERIFY general assembly, Reading, U.K., 12-14 March 2019

Why?	The Global Scale
 Environment and Climate Change Canada (ECCC) has a multiscale approach to the development of Greenhouse Gas (GHG) data assimilation systems. The goal is to estimate fluxes of CO₂ and CH₄ from national to urban scales using atmospheric and geophysical observations in order to address carbon cycle science and policy needs such as The quantification of natural sources and sinks of CO₂ in boreal regions The monitoring of GHG emissions over a potentially thawing permafrost The ability to detect the impact of potential mitigation efforts on CO₂ and CH₄ emissions with the aim to provide timely information to stakeholders Contribution to national and international research collaborations (WMO-DAOS, WMO-IG³IS, Canadian Space Agency, U of Toronto) 	 The ECCC Carbon Assimilation System (EC-CAS) uses modeling and assimilation tools used for operational weather prediction: The Global Environmental Multiscale (GEM) model (Girard et al., 2014) and the Ensemble Kalman Filter (EnKF) (Houtekamer et al., 2014). Adaptation of GEM for GHG simulation involved implementation of mass conservation, tracer variable definitions as mixing ratios with respect to dry air, addition of tracer transport through deep convection and tuning of boundary layer scheme (Polavarapu et al., 2016) Currently, 3 species are simulated: CO₂, CH₄ and CO. A simplified climate-chemistry is used for CH₄ and CO with monthly OH climatology from Spivakovsky et al. (2000). The assimilation system extends the EnKF for GHG state and flux estimation. Currently, the EnKF is being tested and tuned for CO state estimation. Relative contributions to CO forecast uncertainty The EnKF works well when the ensemble spread reflects the true forecast error. With only uncertainty in meteorological
The Regional Scale	analyses (cyan curve), CO forecast spread saturates at 4 ppb. Adding CO initial condition uncertainty (blue curve)

makes little difference. However, allowing for uncertainty in surface fluxes (pink curve) doubles the spread to 8 ppb. Allowing for model errors (due to convection, PBL modeling, etc.), flux errors and meteorological analysis errors produces the greatest ensemble spread of 13-14 ppb (red curve). -

The benefit of assimilating CO observations in EnKF compared to control cycle (which uses only met obs)

- Identical twin experiment, 64 ensemble members
- Obs error = 10%, no correlations
- Prior covariance localization radii = (2000, 2) km
- Flux error correlation = 2000 km

Benefit of simulated MOPITT observations

(0-5 km and 11 Jan - 15 Feb, 2015) Benefit

The reduction in RMSE obtained by assimilating hourly in situ observations from 17 sites in ECCC's network

assimilating real obs: 11 sites in ECCC's network. Tuning of EnKF parameters still needs to be done.

Great Plains, Oklahoma; Sinton, Texas; Trinidad Head, California, West Branch, Iowa

- **Current research**: (a) Evaluating benefit of regional model over global model with same coarse resolution fluxes, (b) Understanding relative role of initial and boundary conditions in controlling regional GHG distributions. (Kim et al., 2019a,b In Prep.)
- **Next steps**: Develop assimilation system using Lagrangian approach and/or nested ensemble Kalman Filter to get flux estimates over Canada on regional scales

The reduction in RMSE from assimilating MOPITT profiles using averaging kernels thinned to 0.9°

- **Current research**: (a) Tune EnKF parameters for real CO obs, (b) document EC-CAS state estimation for CO using OSSEs and synthetic data networks (Khade et al., In Prep.)
- **Next steps**: (a) Test ability to retrieve CO fluxes, (b) Extend EnKF for CO₂ state and flux estimation, (c) Extend EnKF for CH_4 state and flux estimation.

The Urban Scale

Forward simulation of CO₂ concentration at Toronto monitoring site (20m a.g.l.), by source category, using GEM-MACH at

regional scale model in future.

Current research: (a) Completion of inverse modelling framework over GTHA for CO₂ and CH₄, (b) Modelling and additional measurements of carbon isotopes and co-emitted species for source apportionment, (c) integration of data from novel measurement systems (total column GHG and lower-cost sensors) and mobile platforms.

Next steps: (a) Perform a sector-specific inversion experiment for CO_2 (base year 2016), (b) establishing a Bayesian inversion framework for CH_4 , (c) extension of observation-based flux estimates for CH_4 until 2018.

2.5x2.5 km². Dominant influence from Novel CO₂ emission inventory in Southern natural gas combustion for domestic heating Ontario used as prior in forward and inverse and traffic sources within the urban area. modelling. Symbols denote locations of the Boundary conditions will be provided by our four existing continuous atmospheric monitoring stations (TOR, EGB, HLN, TKP).

Mobile surveys of (fugitive) CH₄ sources in the Greater Toronto Area to identify subgrid variability of CH₄ concentrations/sources as well as future application of gaussian plume and CFD modelling to quantify site-scale emissions.

Forward simulation of total CH_{4} in Southern Ontario using GEM-MACH at 10x10km² (recently updated to 2.5x2.5km² and now including 12 source categories from 15 source regions)

Estimated CH₄ emissions in Southern Ontario derived from two inventories and one top-down method (Radon Tracer Method). Top-down suggest lower emissions than reported, long-term trend (beyond 2009) also suggests a further decrease until 2018.

Girard, C. et al. (2014) Mon. Weather Rev., doi:10.1175/MWR-D-13-00255.1 Houtekameter et al. (2014) Mon. Weather Rev., doi:10.1175/MWR-D-13-0000138.1 Polavarapu et al. (2016) Atmos. Chem. Phys., doi:10.5194/acp-16-12005-2016 Spivakovsky et al. (2000) J. Geophys. Res., doi:10.1029/1999JD901006

Acknowledgements Hanlan's Point observations are courtesy of Doug Worthy (ECCC). We thank Arlyn Andrews (NOAA) and Marc Fischer (LBL) for Walnut Grove tower data and Colm Sweeney (NOAA) for aircraft profile data. The obspack_co2_1_CARBONTRACKER_CT2017_2018-05-02 data were obtained from obspack_co2_1_GLOBALVIEWplus_v3.1_2017-10-18 (doi: http://dx.doi.org/10.15138/G3T055) Modelling at urban scales is supported by AQRD (C. Stroud, M.Moran, J Zhang) and in collaboration with UToronto (J.Murphy and D. Wunch). The global assimilation effort is supported by the Canadian Space Agency.