Observation-based estimates of non-CO₂ greenhouse gases

Rona Thompson (NILU), Tuula Aalto (FMI), Peter Bergamaschi (JRC), Philippe Bousquet (LSCE), Dominik Brunner (EMPA), Sander Houweling (VUA), Adrian Leip (JRC), Marilena Muntean (JRC), Pete Smith (UABDN), Timo Vesala (UH), Pierre Regnier (ULB) & Jean-Matthieu Haussaire (EMPA)

General Objectives

- Deliver estimates of CH₄ and N₂O fluxes, including anthropogenic as well as natural sources, and build this capacity into a pre-operational system
- Improve the understanding of the processes driving fluxes of CH₄ and N₂O, and reduce the uncertainties in their budgets and trends at national, regional and continental scales

Sources of methane

Data from the Global Carbon Project

Sources of nitrous oxide

Total global emission of 17 Tg/y

Data from the Global Carbon Project

- Ocean
- Natural soil
- Agricultural soil
- Industrial processes
- Biomass burning
- Manure management
- Waste

Uncertainties in BU estimates

Methane

- Microbial emissions which depend strongly on local conditions (temperature, soil moisture etc.)
- Uncertainties on some sources >100%
- Challenging to represent with process-based models

Nitrous oxide

- Microbial emissions which depend strongly on local conditions (temperature, soil moisture etc.)
- Emission factor uncertainty range 30 to 300%
- Challenging to represent with process-based models

Large uncertainties in BU methods, therefore, likely that TD methods can contribute to improved estimates

Overview of the workflow

Bottom-up methods for estimating CH₄ and N₂O emissions

Agricultural emissions: methods

- Process-based model: ECOSSE
- Statistical model: CAPRI

Sources	Method/Model	Notable Inputs
enteric fermentation (CH ₄)	CAPRI based on IPCC Tier 1 approach (emission factors)	crop areas, yield, livestock densities, nutrient inputs
manure management ($CH_4 + N_2O$)		
direct + indirect emissions ($CH_4 + N_2O$)		
soil emissions (N ₂ O) (cropland, grassland, forests)	ECOSSE process-based land surface model	climate, land-use, nutrient inputs, & soil data

Agricultural emissions: N₂O

N₂O emissions for cropland (annual average 2005-2015)

N₂O emissions for grassland (annual average 2005-2015)

Preliminary results

Model approach is still under development

Problem:

Emissions in Central (e.g. NL) and Western Europe too low

Solution:

Fertilizer application needs to be changed from fertilizer demand to actual application rate

For grasslands:

In the actual assumptions management is not considered.

- EDGAR Emission Database for Greenhouse Gas Research: uses activity data and IPCC Tier 1 approach. Estimates emissions for both agricultural and non-agricultural anthropogenic sources
- Used for both CH₄ and N₂O for all countries
- EDGAR final products: emission time series and global maps at 0.1°×0.1°

Sources (for VERIFY)	Method/Model	Notable Inputs
industrial	Based on EDGAR.v4.3.2 (1970-2012) and extended forward in time to 2015 (results	Activity data from international statistics and satellite remote sensing
residential		
transport		
energy	expected 2019)	

EDGARv4.3.2 CH₄

EDGARv4.3.2 N₂O

EDGAR CH4 emission 2012 - Global

Soil and peatland emissions

180.0

81.0

-27.0

9.0

3.0

1.0

0.0

-0.1

-0.3

-0.9

Soil and peatland emissions

-0.9

Mineral soil CH_4 uptake (g [C] $y^{-1} m^{-2}$)

Mineral soils both emit and take up methane

Peatland emissions are predominantly in northern Europe

Inland water body emissions

CH₄ and N₂O fluxes from inland water-systems

- Computes fate of terrestrial-derived & in-situ produced C along the flow path
- Relies on estimates of river (Lauerwald et al., 2015), reservoir (GranD) and lake (HydroLAKES) volumes and surface areas available for gas exchange
- Model inputs: Estimates of terrestrial C and nutrient inputs

Top-down methods

for estimating CH₄ and N₂O emissions

Inversion method

Based on Bayesian statistics

Atmospheric network

Sites measuring CH₄ and N₂O in Europe

Emission estimates: CH₄

Results 1st year inversions

a priori TM5-4DVAR

Preliminary results

- Model: TM5-4DVAR
- Global 6°×4°, Europe1°×1°
- Period: 2005-2016
- Priori estimate: GCP-CH₄

20

Emission estimates: CH₄

Results 1st year inversions

Preliminary results

- Model: FLEXPART-ExtKF
- Resolution: 0.5°×0.5°
- Period: 2005-2016 (shown for 2010)
- Priori estimate: based on EDGAR

Preliminary results

Model: TM5-4DVAR

Emission trends: CH₄

All observations assimilated as available (i.e. not continuous for all stations over 2005-2016 period)

Emission estimates: N₂O

Results 1st year inversions

- Model: FLEXINVERT+
- Resolution: 0.5°×0.5°
- Period: 2005-2015
- Priori estimate: EDGAR-v4.32

Mean prior emissions (gN m⁻² d⁻¹)

Mean posterior emissions (gN m⁻² d⁻¹)

National emissions: N₂O

Detection of hotspots: N₂O

- Only <1% land area responsible for 20% of emissions
- Hotspots defined as >99.5 percentile emissions
- Hotspots largely from nitric and adipic acid production (sector 2B)

Research & Development

- Using CH₄ retrievals from satellite instrument TROPOMI aboard Sentinel 5P (launched Oct-2017)
- High-resolution 7x7 km

Summary and conclusions

- Bottom-up methods have very large uncertainties on some sources of CH₄ and N₂O leading to very large overall uncertainties
- Potential for top-down methods to contribute to improved emission estimate for these species
- Preliminary inversions show slightly higher CH₄ and N₂O emissions for EU28 compared to UNFCCC reports
- Both CH₄ and N₂O show a small decreasing trend over 2005-2016