Monitoring the CO$_2$ emissions from cities using space-borne images of CO$_2$ and co-emitted species

Dominik Brunner1

with contributions by
Gerrit Kuhlmann1, Julia Marschall2, Yasjka Meijer3, Grégoire Broquet4, Michael Buchwitz5, Max Reuter5

1 Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland
2 Max Planck Institute for Biogeochemistry, Germany
3 ESA ESTEC, the Netherlands
4 Laboratoire des Sciences du Climat et de l'environnement, France
5 Institute of Environmental Physics, University of Bremen, Germany
Why are we interested in CO₂ emissions from cities?

Cities account for ~70% of global CO₂ emissions and have a large reduction potential.

Cities increasingly recognize responsibility for, and vulnerability to, climate change.

Sources: IPCC, World Resources Institute, World Bank

113 out of 164 submitted NDCs show clear urban references, stressing key role of cities in climate change mitigation.
Why are we interested in CO$_2$ emissions from cities?

CO$_2$ emissions are concentrated on a small area:
- 90% emitted over less than 8% of area of Europe
- 52% from point sources, primarily power plants
Planned Sentinel-CO\textsubscript{2} satellite versus existing satellites

Future CO\textsubscript{2} satellite must have

- **Dense sampling**
 imaging of CO\textsubscript{2} plumes

- **High spatial resolution**
 capture emission hotspots and avoid clouds

- **High accuracy**
 because atmospheric column XCO\textsubscript{2} gradients are small

- **Global coverage**
 Support for Paris Agreement requires a global scope

Adapted from Philippe Ciais, presentation at CarbonSat UCM, 15-16 Sep 2015
Challenges for quantifying city CO$_2$ emissions from space

- XCO$_2$ enhancements in city plumes are weak and often close to detection limit
- Tradeoffs between swath width, pixel size and precision, i.e., tradeoffs between coverage, ability to resolve small-scale plumes, and SNR
- Detection of anthropogenic XCO$_2$ signal against variability in background and biospheric XCO$_2$
- Frequent cloud cover and other unfavorable meteorological conditions (e.g. very low or strong winds) preventing plume detection
- Temporal variability of source requires sufficient number of plume observations to build up a representative annual estimate
- Confounding signals from other sources, e.g. nearby power plants

Measurements of co-emitted species like NO$_2$ or CO may help with several of these points, e.g. distinction between anthropogenic and biospheric signals
Studies on city CO₂ emission quantification from satellites

ESA funded studies

- LOGOFLUX and LOGOFLUX-2: Scientific support study to evaluate the greenhouse gas surface flux estimate capabilities of the CarbonSat mission
- SMARTCARB: Study added benefit of NO₂ and CO satellite measurements for quantifying CO₂ emissions using high-resolution OSSEs
- PMIF: Investigate capability of Sentinel-CO₂ for quantifying emissions from clumps (e.g. cities) using simple, efficient Gaussian plume modeling
- AEROCARB: Study influence of aerosols on ability to retrieve XCO₂ in city plumes based on chemistry-transport simulations
- CCFFDAS: Translate mission specifications into uncertainty reductions in fossil fuel fluxes using Quantitative Network Design of a Carbon Cycle/Fossil Fuel Data Assimilation System

EU funded study

- CHE: Explores development of a European system to monitor human activity related CO₂ emissions
OSSE approach

- High-resolution (1 km) simulations of atmospheric CO$_2$, NO$_2$ and CO simulations with COSMO-GHG model
- Synthetic observations of CO$_2$, CO and NO$_2$ using SRON orbit simulator and different instrument noise scenarios
- Quantification of emissions using analytical inversion applied to tagged tracers (e.g. tracer of CO$_2$ emitted from Berlin)
- Quantification using a data-driven approach based on plume detection algorithm and mass balance

Goals

- How well can plumes be detected by different CO$_2$, NO$_2$, CO instruments?
- How well can emissions be quantified with or without measurements of co-emitted species NO$_2$ or CO?
Synthetic satellite observations

$\sigma = 0$ ppm

$\sigma = 0.5$ ppm (low noise)

$\sigma = 1.0$ ppm (high noise)

Parameterization of random noise following Buchwitz et al. 2013
Detection of plumes against noise & background variability

Berlin plume peak signal

- **CO₂**
 - XCO₂ (ppm)
 - Signal
 - Uncer.
 - High noise
 - Medium noise
 - Low noise
- **NO₂**
 - NO₂ (10^15 molec. cm⁻²)
 - Signal
 - Uncer.

Spatial variability of background

- Total
- Only (local) biosphere
Plume detection example of 21 Apr 2015, 11 UTC

Plume detection algorithm

\[
\frac{\bar{X}_p - \bar{X}_{BG}}{\sqrt{\frac{s_p^2}{n_p} + \frac{s_{BG}^2}{n_{BG}}}} > z(p)
\]

Kuhlmann et al. (in preparation)
See also SMARTCARB final report

CO₂ (σ_{ref} = 0.5 ppm)

- 137 detected pixels (PPV = 0.93)
- Thin cloud prevents CO₂ retrieval

NO₂ (σ_{ref} = 2×10^{15} cm⁻²)

- 1086 detected pixels (PPV = 0.88)
- NO₂ retrieval still possible

Cloud fraction > 1%
Number of successfully detected plumes

- Total number of detectable plumes (defined as plumes with > 100 pixels with XCO$_2$ signals above 0.05 ppm) **about 10 per satellite** (250 km swath)
- Plume detection algorithm finds **only 20%-30%** of these plumes to be useful (>100 detected pixels) with a high- and low-noise CO$_2$ instrument, respectively
- For NO$_2$ instrument, success rate is much higher, **about 70%** for both low and high noise instruments
Estimation of CO$_2$ emissions by mass balance

Analysis for constellation of six satellites

Approach:
Estimation of flux through vertical control surfaces

With CO$_2$ instrument only

Deviations from truth

Negative bias due to difficulty in separating plume from background
Summary of SMARTCARB emission estimates

<table>
<thead>
<tr>
<th>σ_{VEG50} (ppm)</th>
<th>Mean bias</th>
<th>Standard deviation</th>
<th>Root mean square deviation of mean</th>
<th>Number of plumes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mt yr$^{-1}$</td>
<td>%</td>
<td>Mt yr$^{-1}$</td>
<td>%</td>
</tr>
<tr>
<td>Analytical inversion using tracer information provided by the model, time-varying emissions**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>0.6</td>
<td>3.3</td>
<td>17</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0</td>
<td>0.1</td>
<td>3.2</td>
<td>16</td>
</tr>
<tr>
<td>1.0</td>
<td>0.2</td>
<td>0.9</td>
<td>4.1</td>
<td>20</td>
</tr>
<tr>
<td>Mass balance approach using CO$_2$ for plume detection with $n_s = 37$ and $q = 0.99$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>-4.8</td>
<td>-24</td>
<td>6.7</td>
<td>34</td>
</tr>
<tr>
<td>0.7</td>
<td>-6.5</td>
<td>-32</td>
<td>7.6</td>
<td>38</td>
</tr>
<tr>
<td>1.0</td>
<td>-3.1</td>
<td>-16</td>
<td>5.1</td>
<td>26</td>
</tr>
<tr>
<td>Mass balance approach using NO$_2$ for plume detection with $n_s = 37$ and $q = 0.99$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>-1.3</td>
<td>-6</td>
<td>9.2</td>
<td>46</td>
</tr>
<tr>
<td>0.7</td>
<td>-1.0</td>
<td>-5</td>
<td>9.7</td>
<td>48</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.6</td>
<td>-3</td>
<td>10.7</td>
<td>53</td>
</tr>
</tbody>
</table>

* constellation of 6 satellites
LOGOFLUX case study for Berlin by IUP Bremen

Pillai et al., ACP, 2016

Tracking city CO₂ emissions from space using a high-resolution inverse modelling approach: a case study for Berlin, Germany

Dhanyalekhsmi Pillai1,2, Michael Buchwitz3, Christoph Gerbig4, Thomas Koch5, Maximilian Reuter1, Heinrich Bovensmann1, Julia Marshall1, and John P. Burrows1

1Institute of Environmental Physics, University of Bremen, Bremen, Germany
2Max Planck Institute for Biochemistry, Jena, Germany

XCO₂ simulations using EDGAR & IER

A priori & a posteriori errors

• Case study for Berlin for year 2008
• Satellite data: Simulation for CarbonSat (2x2km², swath width 240 km & 500 km)
• Model: WRF-GHG, 10x10km² resolution
• Bayesian inversion

Summary:
• Number of “good” overpasses per year: 17 (240 km) - 27 (500 km)
• Single overpass random error: typ. 9 MtCO₂/year
• Systematic: typically 6-10 MtCO₂/year depending on assumptions
Satellite XCO₂ & NO₂ imaging of localized CO₂ sources

Towards monitoring localized CO₂ emissions from space: co-located regional CO₂ and NO₂ enhancements observed by the OCO-2 and S5P satellites
Reuter et al., ACP (submitted)

Maximilian Reuter¹, Michael Buchwitz¹, Oliver Schneising¹, Sven Krautwurst¹, C.W. O’Dell², Andreas Richter¹, Heinrich Bovensmann¹, and John P. Burrows¹

¹Institute of Environmental Physics, University of Bremen, Germany
²Colorado State University, Fort Collins, CO, USA

Example:

Baghdad, 31-July-2018

- Satellite data: OCO-2 XCO₂ and S5P NO₂
- NO₂ primarily for emission source identification
- Cross-sectional CO₂ flux via integration of Gaussian plume XCO₂ enhancement times wind speed (from ECMWF)
- 20 promising scenes identified during 03/2018-08/2018; 6 scenes discussed in detail in paper
- Comparisons with EDGAR, ODIAC, ...
- Limitation: Narrow OCO-2 swath (10 km); will be much better with CO2M (> 200 km)

See also poster „OCO-2 XCO₂ retrievals using the FOCAL algorithm“
Satellite XCO₂ & NO₂ imaging of localized CO₂ sources

Moscow on 25-August-2018:

Estimated emission: 78±34 MtCO₂/year

Reuter et al., ACP (submitted)
LOGOFLUX study for Paris by LSCE

Broquet et al., AMT 2018

- Typical width/amplitude of the Paris plume: 40km/+1ppm
- Signature of 1-hour emissions vanishes from the XCO$_2$ image in ~5-6 hours

Simulations of XCO2 using the CHIMERE model at 2 km res & the AIRPARIF inventory (Paris ~14 MtC.y$^{-1}$)

7 Oct 2010, 11:00

- no noise full domain
- no noise, CS sampling (240 km swath)
- CS random noise (240 km swath)
- CS random + systematic error (240 km swath)
LOGOFLUX study for Paris by LSCE

- Use individual images at 11:00 to retrieve Paris emissions up to 6 hours before
- 20 test cases (20 days in Oct), estimation of hourly emissions by Bayesian inversion
- Neglected factors: transport errors, clouds, systematic errors, uncertainties in spatial distribution of Paris emissions and NEE
- Analysis for dependence of results on wind speed, spatial resolution, noise, swath

20-70% uncertainty reduction for 6-hour emissions with CarbonSat, potential to solve for temporal profiles
Summary

• Quantifying city emissions from satellites is challenging since plume signals are small
• Single satellite with 250 km swath not sufficient: Can “see” Berlin plume only 10x per year, of these only 20-30% have well detectable CO2
• Additional NO₂ instrument has multiple benefits:
 • Approx. 3x more plumes detectable due to higher SNR and smaller background
 • Enables better distinction between plume and background, reducing biases in estimates
 • Potential demonstrated by Reuter et al. (submitted) for OCO-2
• Uncertainty of emission estimate from single overpasses ~20% of Berlin emissions (Pillai et al. 2016, Kuhlmann et al., in prep.) for perfect transport model inversion
• Satellite mainly sensitive to emissions 0-6 hr before overpass. Uncertainty of 6hr average emission may be reduced by ~50% (Broquet et al. 2018)
• Current inversion systems are not well adapted to problem, since plume information is only used to optimize emissions but not atmospheric transport
Thank you for your attention!