

City-scale: lessons (learned) from (some) US (and non-US) research activities

Thomas Lauvaux

Now at LSCE, France Worked performed while at The Pennsylvania State University

Inferring trace gas emissions from urban areas

Urban areas represent 70% of the global fossil fuel emissions and 50% of the population (projected to grow to 70% by 2050)

Metropolitan regions increasingly complex as city centers merge into connected urban metabolisms

Two major projects in North America: Indianapolis and Los Angeles (also Salt Lake City and Washington D.C./Baltimore)

Indianapolis (INFLUX experiment, PennState): simple terrain, single city center, flat terrain, agricultural landscape Collaborators: Paul Shepson, Purdue; Kevin Gurney, ASU; Colm Sweeney, NOAA GMD; Jocelyn Turnbull, GNSS

Los Angeles (LA Megacity, JPL): megacity, complex terrain (coastal basin), urban vegetation Collaborators: Riley Duren, JPL; Paul Wennberg, Caltech; John Miller, NOAA;

Natasha Miles, Scott Richardson, Kenneth Davis, Kai Wu, Nikolay Balashov, Aijun Deng, Brian Gaudet Department of Meteorology, Pennsylvania State University

> Colm Sweeney ESRL/NOAA GMD, CIRES, Boulder

> > Anna Karion, Kim Mueller NIST

> > Jocelyn Turnbull GNS Science, New Zealand

Paul Shepson, Obie Cambaliza, Purdue University

> Jon Wang, Lucy Hutyra University of Boston

The INFLUX observing network

- 12 towers ($CO_2/CH_4/CO$)
- 5 NOAA flask samplers
- 3 eddy-flux towers
- 1 Doppler lidar

Operational since 2010 (full network in 2012)

Aircraft mass-balance flights

High-resolution data product (Hestia, Gurney et al., 2012)

Multi-species assimilation to identify economic sectors

- Sector-level emissions require disaggregation of atmospheric signals

- Additional data are required to disentangle contributors from mixed plumes

Example: trace gas measurements from discrete flask samples with 55 atmospheric species from NOAA PFP's

Can we attribute signals to specific sectors of the economy?

Options for the INFLUX project:

- CO from incomplete combustion (traffic)
- C_2H_2 from traffic and industries
- HFC-134a from air conditioning
- Alkanes for methane attribution

Still large gaps in our knowledge – and technology changes rapidly

Sectoral attribution of trace gases measured in NOAA flask samples.

Multi-species assimilation to identify economic sectors

Assimilation of multiple sectors of the economy:

- Atmospheric CO₂ mixing ratios only: Requires balanced uncertainties (dichotomy problem)

- Atmospheric CO and CO₂ mixing ratios: Uncertainties of the sectors should be balanced by the sensitivities of the trace gases

Two activity sectors used in the inversion system:

- Combustion Engine (traffic & non-road)
- Other sectors (Res & Ind & Utility & Com & Airport & Rail)

Nathan et al., accepted JGR-Atmos.

Render to Caesar the things that are Caesar's

Dr. Brian Nathan

Now Post-doctoral researcher, at Aix-Marseille University, France

Current project: Aix-Marseille Carbon (AMC) Project, studying CO₂ emissions and behavior in the South France/Coastal Mediterranean region (P.I.: Dr. Irène Xueref-Rémy)

Sectoral atmospheric inversion framework

The definition of emission sectors needs to address:

- attribution problem: balancing error variances

- orthogonality: maximize the information from gas-to-gas ratios (e.g. commercial and residential sectors are nearly identical in terms of CO:CO₂ ratios)

For Indianapolis:

- Sector 1: On-road and off-road sectors (about 50% of the total emissions) High CO:CO₂ ratio
- Sector 2: Everything else Low CO:CO₂ ratio

Sectoral emissions of CO and CO₂

Couple notes:

Combustion Engine has a high sensitivity to CO
the balance in CO error variances is not optimal

Other Sector shows larger point sources
= error variances will be even larger (squares of large peaks are even larger)

- Lack of spatial resolution in off-road emissions

Inversion only optimizes CO₂ emissions
 (CO:CO₂ ratios used to propagate CO innovations into CO₂ flux space)

Atmospheric CO₂ mixing ratios simu; lated by WRF-LPDM for each sector (traffic and others) and biogenic fluxes from VPRM (2012-2015) compared to observed gradients (downwind minus background) averaged over 5 day periods.

Total CO₂ emissions and biogenic fluxes (2012-2015) and overall emission trend before and after inversion (1km resolution)

Prior and inverse CO₂ emissions (2012-2013) for 16 inverse system configurations (1km resolution)

Sectoral CO₂ emissions (2012-2015) and overall emission tre before and after inversion (1km resolution)

Change after inversion in sectoral CO₂ emissions (2012-2015)

Sectoral CO₂ emissions (2012-2015) and overall emission tre before and after inversion (1km resolution)

Change after inversion in sectoral CO₂ emissions (2012-2015)

Total CO₂ emissions and biogenic fluxes (2012-2015) and overall emission trend before and after inversion (1km resolution)

Prior and inverse CO₂ emissions (2012-2013) for 16 inverse system configurations (1km resolution)

Urban emissions from space: first results from OCO-2

Xinxin Ye, Sha Feng Department of Meteorology, Pennsylvania State University

Eric Kort, Emily Yang University of Michigan, Ann Harbor

John Lin, Dien Wu University of Utah, Salt Lake City

The Orbiting Carbon Observatory (OCO-2) mission

Passive instrument measuring total XCO₂ mole fraction

Revisit time of 16 days

Three modes: Nadir, Glint, Target

Operational since Oct 2014

OCO-2 ground tracks with 8 surface footprints of 1.3km by 2.3km

In collaboration with Jet Propulsion Laboratory Annmarie Elderling, David Crisp **Render to Caesar the things that are Caesar's**

Dr. Xinxin Ye

Now Post-doctoral researcher, at University of California Los Angeles

Current project: FIREX (NOAA) Project, studying CO emissions from forest fires in the US (P.I.: Pr. Pablo Saide)

Urban plume detection from OCO-2 retrievals and WRF-Chem simulations

emission/ppm

WRF-Chem simulations at 1km resolution coupled to ODIAC (Oda et al., 2010)

Nested configurations (9-/3-/1-km domains)

Mesoscale non-hydrostatic equations with turbulent closure scheme (order 2.5) for the **Planetary Boundary Layer**

XCO₂ retrievals from OCO-2 track near Riyadh compared to WRF-ODIAC simulations at 1km resolution with wind vectors at 100m agl (in ppm and m/s)

Imprints of urban CO₂ emissions detected by Orbiting Carbon Observatory-2 (OCO-2)

Two examples of city plume detection frm space: OCO-2 tracks near Riyadh and Los Angeles

OCO-2 characteristics Repeat cycle of 2 weeks Footprints: 1.5x2.5 km

Simulation using WRF-Chem at 1km resolution

Emissions from nightlight data combined with national reported emissions (ODIAC)

XCO2: total column dry air mole fraction of CO_2

Work of Xinxin Ye, now at UCLA

Biogenic fluxes and fossil fuel emissions

Park Suburban Rural

Biogenic flux maps based on:

Obs. enhancement

Net biogenic ΔXCO₂

Biogenic ΔXCO₂

FF ΔXCO₂

Rural

Suburban

Pond Warehouse

or Industrial

 ΔXCO_2

0

- ensemble of 15 biogeochemical models
- upscaled using GVF from MODIS
- urban and rural vegetation assumed similar

ΔXCO_{2obs}

Urban

Residential

 $\Delta XCO_{2 obs. BIQ}$

XCO2obs, FF

Downtown

Urban

Residential

Optimal Fossil Fuel CO₂ emissions: examples of Riyadh and Cairo

XCO_2 retrievals from OCO-2 track near Riyadh and Cairo compared to WRF-ODIAC simulations at 1km resolution with wind vectors at 100m agl (in ppm and m/s)

Technical challenges

- Linear interpolation of background XCO2
- Non-Gaussian structures for most cases
- Complex wind fields despite relatively flat terrain

Magnitude of plumes remains low for both cities

Optimization method:

- Perfect distribution: adjusting a single scaling factor for each day
- Reduced transport errors: adjustment of the integral of the XCO2 enhancement

Optimal Fossil Fuel CO₂ emissions: examples of Riyadh and Cairo

- Non-Gaussian distribution despite Normal Errors:
 - Non-linear effect when plume track angle low (less than 30 degrees)
- Errors are significant for each OCO-2 track
- Convergence of inverse emissions: higher estimates than ODIAC

Optimal Fossil Fuel CO₂ emissions: example of Los Angeles

Aggregated emissions over the largest metropolitan areas

Urban centers (>5M in population) across the globe and associated growth rates

Uncertainties in emission quantification from vegetation fluxes, transport model errors, and amount of retrievals available over two years of OCO-2 operations (2014-2016)

Conclusions and perspectives

Convergence of a high-resolution inventory and an inversion possible (Indianapolis, IN)

Current satellite data are promising for emission evaluation over large metropolitan areas

Coming soon: April 25th, 2019 OCO-3 launch with hundreds of targets

Images: NASA, SpaceX, L2 imagery: <u>Brady</u> <u>Kennison</u> and Chris Gebhardt for NASASpaceFlight.com