

The global forest carbon balance from flux towers

P. Ciais, S. Besnard, Y. Yao, C. Yue B. Poulter, T. Pugh, S. Saatchi, M. Jung, J. Chave, P. Stoy M. Herold, D. Rozendaal M. Reichstein, S. Piao, N. Carvalhais.

Motivation

Persistent and large uncertainties on the partitioning of the land carbon sink between the tropics and the northern hemisphere

M. Kondo, unpublished

Drivers of land carbon balance at global and local scale

- At global scale
 - Human-caused perturbation of the carbon cycle causes global land carbon sink Photosynthesis - Respiration - Disturbance losses = $2.7 \pm 0.7 \text{ PgC y}^{-1}$
 - Pre-industrial Era, land carbon cycle in quasi-equilibrium
 Photosynthesis Respiration Disturbance losses = river export = 0.7 PgC y⁻¹
- At local scale
 - A system is a sink or a source depending on <u>age since last disturbance</u>
 - C-balance = f(age) is modified by climate change, CO₂, N deposition ...

NEP up-scaled from flux towers using climate and remote sensing is a too large sink

Age drives NEP

Detection of age-effects on NEP impaired by FLUXNET sampling

Blue Bars = Forest age distribution (see later) Red curve = Sampling by flux towers

NEP upscaling

Gridded explanatory variables

Training : local tower NEP residuals + NEP(age) models with local age, GPP, MAT Up-scaling ensemble : Random forest with 1 MAT map x 36 GPP maps x 36 age maps members GPP : Fluxcom Age maps : Poulter et al. + MODIS

BAC Method : up-scaling NEP from Biome specific NEP(age) data + Age + Climate (GPP)

 $NEP(x) = NEP_{b}(x) + NEP_{res}(x)$

Gives : a map of global forest NEP based on <u>age</u> maps, climate and remote sensing datasets

Biome specific NEP-age curves

 Regional chronosequence data were collected to construct <u>NEP = f(age) models in different biomes</u>

NEP-age models for temperate and boreal forests

 Regional chronosequence data were collected to construct <u>NEP = f(age) models in different biomes</u>

NEP –age models in the tropics ? No flux towers chronosequences => Use biometric measurements

Forest age-maps

Age-maps

- In the young ages 0-15 years, where NEP changes rapidly, we build a 2 - years resolution global forest age map from time since disturbance (MODIS)
- In the middle and old ages, B Poulter NASA GSFC constructed a global age map from species maps, forest inventories data and MODIS NDVI. This global map has a resolution of 10 years
- Age maps (forest area of the same age class) with fine step of two years until 15 years old, and coarse steps of ten years after 15 years.

Age maps

Now a new map at 1 km has been produced from in situ and RS biomass

15

NEP upscaling

Gridded explanatory variables

Training : local tower NEP residuals + NEP(age) models with local age, GPP, MAT Up-scaling ensemble : Random forest with 1 MAT map x 36 GPP maps x 36 age maps members GPP : Fluxcom Age maps : Poulter et al. + MODIS

Global NEP distribution (BAC)

AC Method : Up-scaling NEP with : Age + Climate

Single step approach But relies only on a single NEP(age) relationship 'hidden' in the FLUXNET data

Non linear models fitted to FLUXNET sites to derive a global 'universal' NEP = f(age) model

Age-dependent forest C dynamics

- 140 FLUXNET sites in forest ecosystems
- Sites with forest age information
- Tested several stand age model (e.g. Amiro et al. 2010, Coursolle et al. 2012, etc.)

Besnard et al.

Global NEP distribution (AC)

Comparison of both approaches

Forest NEP decadal budgets

	Net Ecosystem Productivity NEP		
	AC	BAC	
Boreal	0.7	0.5	
Temperate	2.1	2.1	
Tropics	3.1	3.6	
Wet tropics	1.6	2.1	
Dry tropics	1.6	1.5	
Globe	6.6 ± 0.7	6.5 ± 0.7	

emissions

From NEP to NBP

- NBP = NEP D
- D = forest fire emissions C lost to rivers Wood harvest reduced C emissions NBP = 6.5 - 0.8 - 0.54 - 0.8 - 0.4 = 4.0 ± 0.8 PgC y⁻¹
- Fire emissions from GFED4.1 (forest only)
- C lost to rivers extrapolated from Regnier et al. 2014
- RCC from MEGAN model
- Global wood harvest (FaoStat)

FLUXNET NBP vs. inventories

	Net Ecosystem Productivity NEP		Net Carbon Balance NBP		NBP from biomass inventories	-
	AC	BAC	AC	BAC	Pan <i>et al</i> .	
Boreal	0.7	0.5	0.3 ± 0.2	0.1 ± 0.2	0.5 ± 0.1	
Temperate	2.1	2.1	1.7 ± 0.2	1.7 ± 0.2	0.8 ± 0.1	than Pan
Tropics	3.1	3.6	1.8 ± 0.5	1.8 ± 0.5	2.8 ± 0.7	smaller sink
Wet tropics	1.6	2.1	0.8 ± 0.3	1.0 ± 0.3	N/A	than Pan
Dry tropics	1.6	1.5	1.0 ± 0.2	0.9 ± 0.2	N/A	
Globe	6.6 ± 0.7	6.5 ± 0.7	4.0 ± 0.9	3.9 ± 0.8	4.1 ± 0.7	

FLUXNET NBP vs. Atmospheric inversions

Stephens et al. Science 2007 Gaubert et al. Biogeosciences 2019

Better age maps or forest structure maps

Tropical dry forest chronosequences

Flux towers in disturbed forests

REWARD \$1,000,000

Take home

Rather than a FLUXNET fruit salad

Use NEP chronosequences (we need more of them)

Take home (alternative)

Rather than a FLUXNET fruit salad

Use geostatistics to separate age from other (covariate) variables

Role of small size disturbances

Espirito Santo et al. Nature Comm.

Latitude

32

34

NEP empirical modelling

- Multivariate analysis
- NEP \sim Age_nonlinear + GPP + Climate + soil properties
- LOO site cross-validation
- LMG method for variable importance.

Local-scale NEP from flux towers contains (hard to find) age information

Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses

Scott R. Saleska,^{1*} Scott D. Miller,² Daniel M. Matross,¹ Michael L. Goulden,² Steven C. Wofsy,¹ Humberto R. da Rocha,³ Plinio B. de Camargo,⁴ Patrick Crill,⁵† Bruce C. Daube,¹ Helber C. de Freitas,³ Lucy Hutyra,¹ Michael Keller,^{5,6} Volker Kirchhoff,⁷ Mary Menton,² J. William Munger,¹ Elizabeth Hammond Pyle,¹ Amy H. Rice,¹ Hudson Silva⁵

The respiration losses from the large stock of dead wood at km 67 exceeded the uptake of C by live biomass, despite high growth rates (54), reflecting disequilibrium of the vegetation assemblage (table S1A). Notably, the C was taken up mostly by small trees

Local-scale NEP is measured by flux towers

- We focus on forest, for which age since disturbance can be more clearly defined
- NEP = f(age) shows usually a transition from source to sink then to small sink
- Few towers sample the full post-disturbance recovery
- Most towers are in middle-aged and old growth forests
- And flux towers do not sample :
 - C losses when disturbance happens
 - C lost by harvested products, leached to rivers, emitted as reduced C-molecules

Age drives biomass increase

NEP up scaling residuals in age and GPP space

