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How can this help the other science
knights to characterize the unknown

dragon?
• find a split from anthropogenic emissions
• prior for atmospheric inversions
• cross-consistency checks for NEE from other approaches
• sensitivity of atm. CO2 to different kinds of uncertainties in

NEE at variety of scales
• process understanding through factorial experiments
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Biogenic fluxes dominate fossil fuel
signal (in growing season)

June 2012

Fuel CO2 emission: monthly, Peking University, Wang et al., 2013
NEE: hourly, MPI-BGC Jena 4



Our approach to modelling the
biospheric trace
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In-situ obs cover large part of the
climate space

Reichstein et al. 2014 6
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Our approach to modelling the
biospheric trace

  

In-situ eddy-covariance 
carbon fluxes & 
meteorology

machine learning global gridded data sets of 
predictors+ +

Global gridded flux estimates of NEE, GPP, TER
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Two complementary set-ups creating
ensembles

RS
effective only temporally
drivers resolved satellite

data

spatial res. 0.083deg
temporal res. 8-daily
years 2001-2015
ML methods 9
meteo forcing -
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Two complementary set-ups creating
ensembles

RS+Meteo RS
effective mean seasonality of only temporally
drivers satellite data resolved satellite

and temporally data
resolved meteorology

spatial res. 0.5deg 0.083deg
temporal res. daily 8-daily
years 1950-2017 2001-2015
ML methods 3 9
meteo forcing 4(6) -
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Two complementary set-ups

RS+Meteo RS
effective mean seasonality of only temporally
drivers satellite data resolved satellite

and temporally data
resolved meteorology

R2 between
NEE/GPPR/GPPL
and observations

spatially � 0.46/ 0.77/ 0.79 0.48/ 0.78/ 0.78
seasonally � 0.59/ 0.77/ 0.77 0.61/ 0.76/ 0.77
anomalies ! 0.13/ 0.12/ 0.11 0.13/ 0.18/ 0.16

Tramontana et al. 2016
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Higher consistency in seasonality with
SIF than TRENDY

Jung et al. 2017

R2 of monthly mean seasonal GPP with SIF for Trendy and
Fluxcom (RS+meteo, only CRUNCEPv6)
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Evolution of resolution of FLUXCOM

8daily daily
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RS RS+Meteo

Tramontana et al. 2016
Jung et al. 2017
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Evolution of resolution of FLUXCOM

8daily daily halfhourly

D
O

Y

RS RS+Meteo RS+Meteo subdaily

Tramontana et al. 2016 Bodesheim
Jung et al. 2017 et al. 2018
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Sub-daily fluxes based on daily meteo
Example: GPP

D
O

Y

dsgsrfgagdfsfgfgafgfghour

Predictors:

Mean seasonality of RS
+ daily meteo from CRUNCEP
+ half-hourly potential radiation

as the only subdaily predictor

Paul Bodesheim et al. 2018
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Sub-daily fluxes based on daily meteo
Example: GPP

D
O

Y

dsgsrfgagdfsfgfgafgfghour

Predictors:

Mean seasonality of RS
+ daily meteo from CRUNCEP
+ half-hourly potential radiation

as the only subdaily predictor
+ hourly meteo from ERA5

Paul Bodesheim et al. 2018

now hourly meteo from ERA5 reanalysis is available

⇒ include additional hourly predictors
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first sub-daily fluxesExample: GPP
daily hourly

CRUNCEP ERA5
D

O
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hour hour
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first sub-daily fluxesExample: GPP
daily hourly

CRUNCEP ERA5 CRU-ERA5
D

O
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hour hour hour

Diurnal cycle in July:
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CRUNCEP ERA5

negative positive
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first sub-daily fluxesExample: GPP
daily hourly hourly ERA5-

CRUNCEP ERA5 CRU-ERA5 daily ERA5
D

O
Y

hour hour hour hour

Diurnal cycle in July:

G
P

P

CRUNCEP ERA5

negative positive

• hourly meteo shifts diurnal cycle

• biases in reanalysis strongly affect
magnitude of fluxes

fdgfsg
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GPP annual sums: choice of meteo.
driver is more important than inclusion

of subdaily meteo

daily CRUNCEP/hourly ERA
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GPP annual sums: choice of meteo.
driver is more important than inclusion

of subdaily meteo

daily CRUNCEP/hourly ERA daily CRUNCEP/daily ERA
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Drought effects not well represented
May Jun Jul Aug Sep

G
P

P

Time of the day

observation
modelled with daily predictors
modelled with daily & halfhourly predictors

gfagfagsdfeg
Bodesheim et al. 2018

Puechabon
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Drought effects not well represented
May Jun Jul Aug Sep

G
P

P

Time of the day

Daily GPP as additional daily predictor:

G
P

P

Time of the day

observation
modelled with daily predictors
modelled with daily & halfhourly predictors

gfagfagsdfeg
Bodesheim et al. 2018

Puechabon
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Seasonal consistency of NEE with
inversions
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Seasonal consistency of NEE with
inversions
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Towards high spatial AND high
temporal resolution
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Spatial resolution [km]
Figure courtesy Martin Jung
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Towards dedicated products:

2.0 
Ongoing efforts for improvements in terms of:

• Training data: more sites, more site-years, higher quality
• spatio-temporal resolution: ERA5, geostationary
• amount and accuracy of predictor variables: extensive

QC, additional predictors (SIF, VOD, forest age,
management on forests and crops,...)

• machine learning methods (e.g. memory effects, transfer
learning)

• better uncertainty characterization
• semi-operational set-up
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Mean NEE in Neustift/Austria: Effects
of topography and management

Jan Jul Dec

3 am

noon

9pm

Figure courtesy Markus Reichstein
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Wallaby Creek - Australia:
disturbances and data-availability

EVI from MODIS (colour) and EC (black):

“Bushfires swept through the region in January 2009 destroying the
tower. Data from the site was recorded from May 2010 to 2016. The
post fire instrumentation was not as diverse when compared to the
pre fire instrumentation.”
http://www.ozflux.org.au/monitoringsites/wallabycreek/wallabyck_description.html 23
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NEE@29/6/2010 12UTC
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Predictors Fluxcom
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• differences in magnitude between CRUNCEP and ERA5
with only daily (ERA5.nh-HHCRU), but rather not clear
phase shift, ERA lower values in GPP –> driver
differences, ERA up to 30% lower Rg

• including hourly data compared to only daily data using
only ERA5 (ERA5.h-ERA5.nh)

• reduces magnitude everywhere, particularly crops
• enhances variability (including negative values) at night
• ehnaces GPP in high lats in summer and in isolated areas

in the Amazon, Ethiopia, western India, slightly in midlats in
autumn

• shifts centroids of daily cycles to earlier increase/decrease
in some biomes (e.g. not crops) –> phaseshift in the
morning (e.g. particularyl in dry season amazon)

• there is no systematic lagged corr explaining the phaseshift
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Shift of diurnal cycle due to hourly
meteo info
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47.25 N,  11.25 E: GPP: mean diurnal cycle
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EC: error sources and magnitude
scale mismatch/ pixel heterogeneity
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