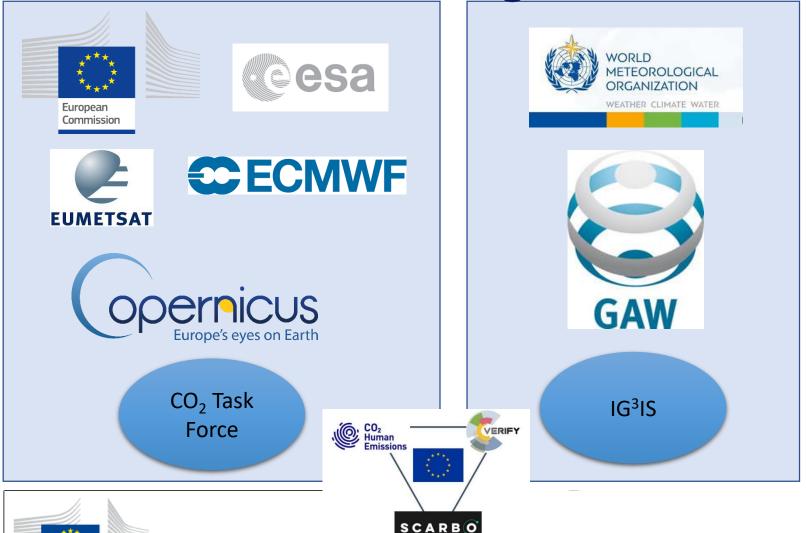
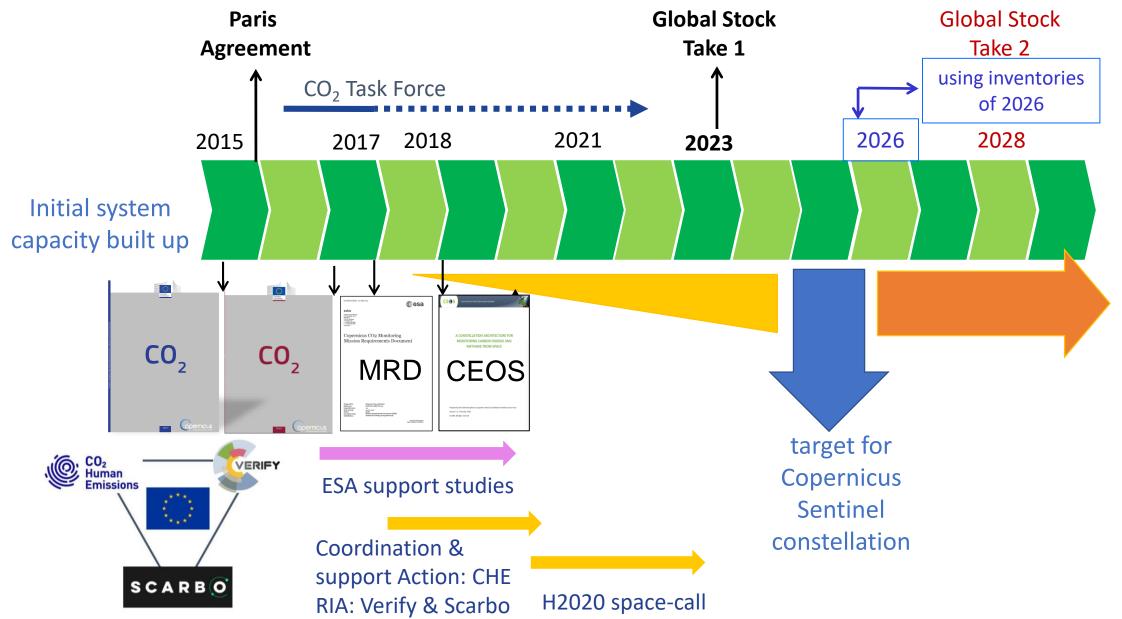


CARBON HUMAN EMISSIONS AND RELATED ACTIONS


Science to deliver Services

Gianpaolo Balsamo

CHE Project Coordinator- ECMWF 22/10/2018 – Presented at the GCOS Science Day FMI, Helsinki, Finland



CHE actors and governance framework

CHE in the context of CO2-MVS activities

CHE-CO2 Human Emission Project (& its numbers)

Aim:

Build European monitoring capacity for Anthropogenic CO2 emissions

How:

Monitoring/Verification System (MVS) driven by Earth observations, from remote sensing and in situ, Combined with enhanced modelling system That includes CO2 fossil fuel emissions. (Cities) along with other natural and anthropogenic CO2 emissions & transport. Why:

To support the Paris Climate Agreement and its implementation

Project Duration:

39 month

Project Funding:

3.75 ME (1.25 ME/year)

Consortium Numbers

22 partners Institutes

Work Content Numbers

7 work-packages:

5-Science development, **1**-International liaison,

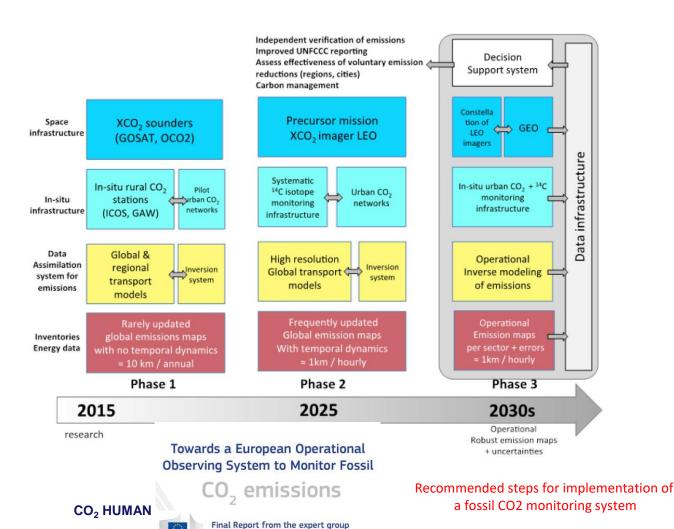
1-Management & Coms

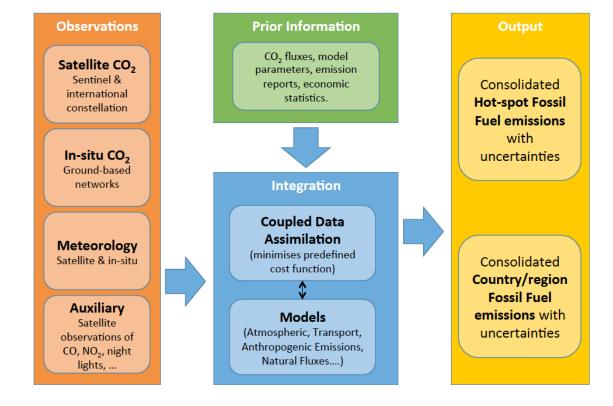
7 Milestones

45 Deliverables

344.25 Person Month (Eq 8.8 FTE)

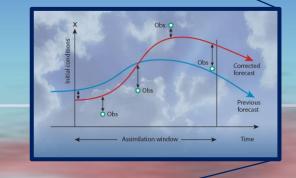
3 Project Reviews (M15, M27Tech, M39)⁴





CHE information support system vision

From: 2017 CO2 MTFB report

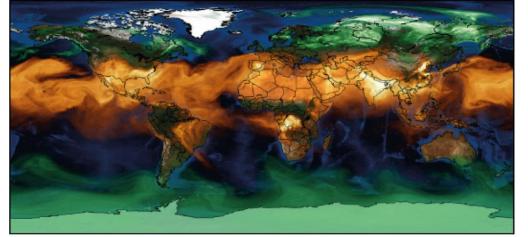

Pinty et al. (2017) An Operational Anthropogenic CO2 Emissions Monitoring & Verificatin Support capacity - Baseline Requirements, Model Components, and Functional Architecture, doi: 1052760/08644, European Commission Joint Research Centre, EUR 28736 EN

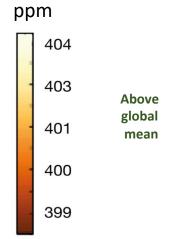
Thanks to Richard Engelen

CO₂ Science challenge

Stratosphere

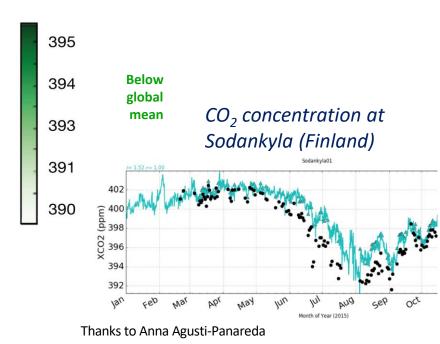
650 CO, Q: Can we monitor CO2 along with Weather&Climate with the

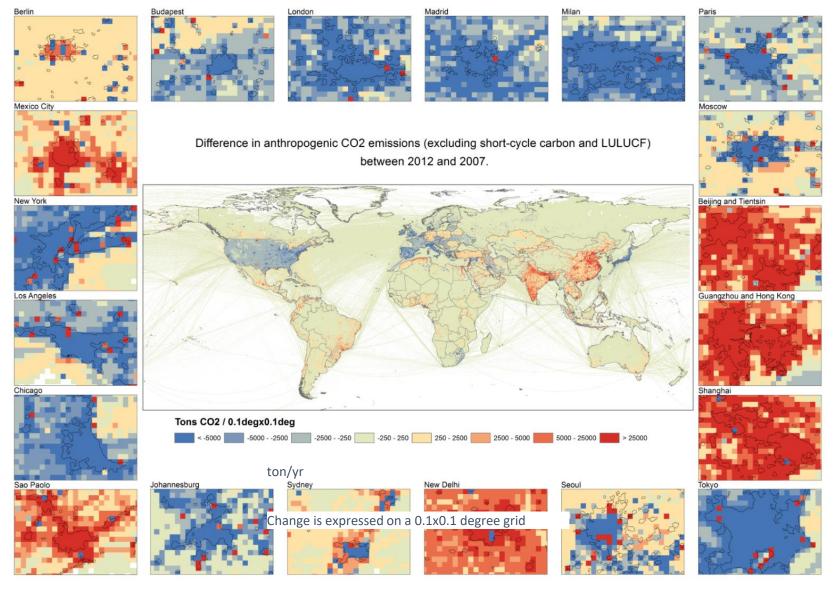

Troposphere


precision requirement necessary to be policy relevant? A: By assembling the building blocks in CHE for year 2015 we aim at evaluating flux and transport uncertainty and develop the data

assimilation science enabling a first prototype.

Simulating CO₂ in ECMWF IFS-HRES


15 Jan 2015


15 Jul 2015

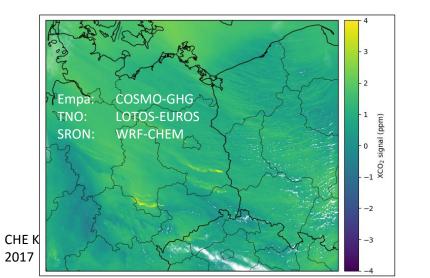
 CO_2 concentration from nature runs on **9 km 3-hourly** . 2015 freely available from CHE project website.

 ${\rm CO_2}$ HUMAN EMISSIONS

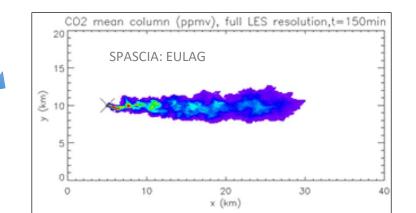
Representing CO₂ Anthropogenic Emission variability

CHE surface emissions Change from year to year (here shown are the Difference 2012-2007)

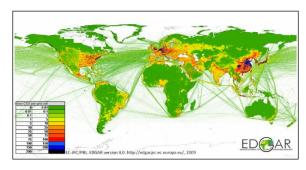
In CHE the monthly variability will be considered for the Tier-2 simulations

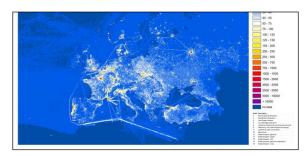

Source: JRC EDGAR team

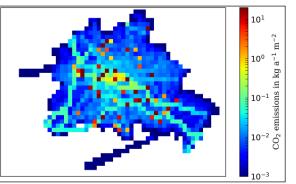
Embracing multi-scale, from local to global

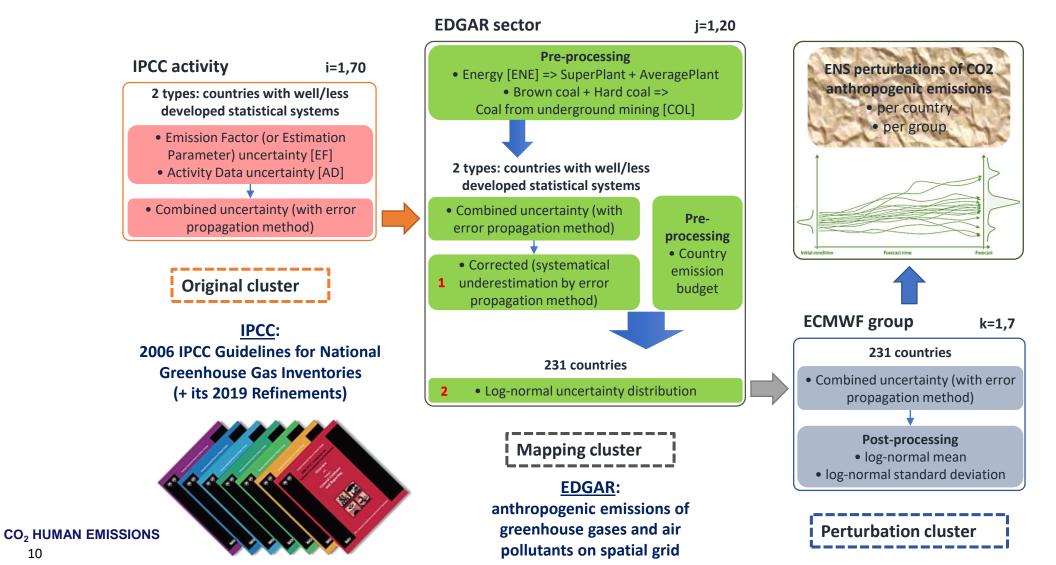

ECMWF: C-IFS

Regional, ~ 1 km, Empa, TNO, SRON




COSMO-GHG WRF-GHG MPG: TNO: **LOTOS-EUROS**


Point source, ~ 100 m, SPASCIA


Global, Regional City emissions

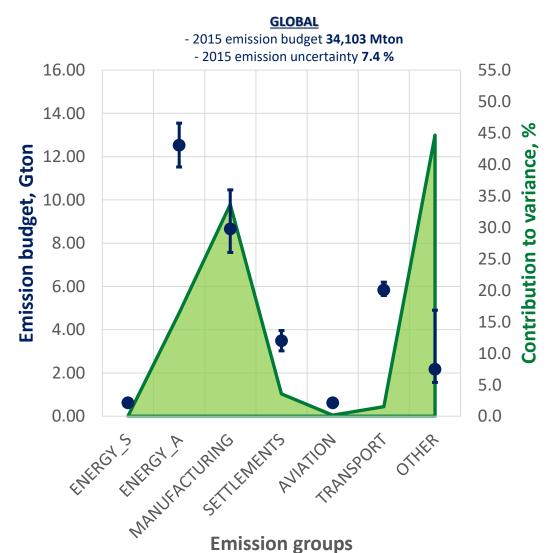
IPCC data chain & consolidation CHE

Data processing chain from 231 countries, 70 activities

WDS, countries with well-developed statistical systems (e.g. UK), 54 countries

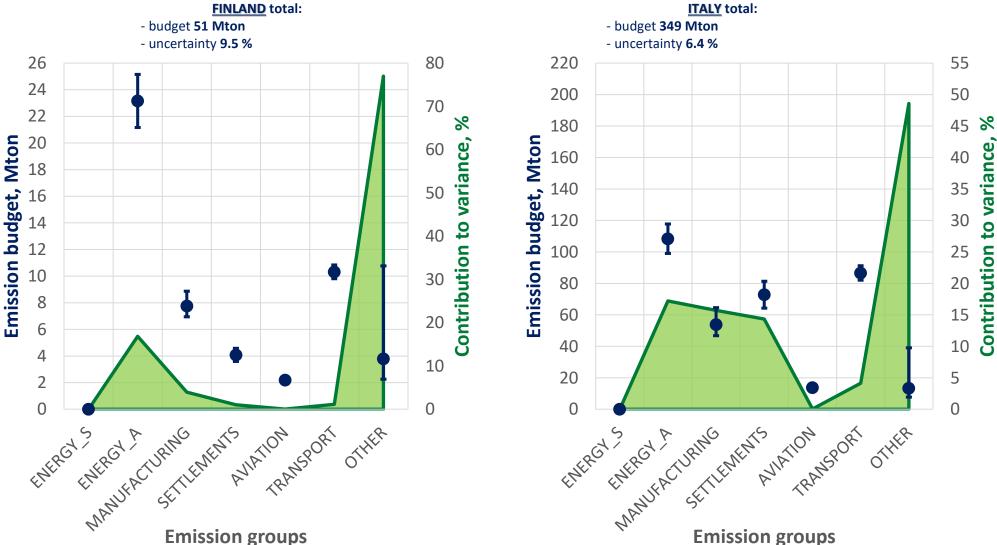
Andorra, Australia, Austria, Belarus, Belgium, British Virgin Islands, Bulgaria, Canada, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Faeroe Islands, Finland, France, Germany, Gibraltar, Greece, Greenland, Guernsey, Hungary, Iceland, Ireland, Isle of Man, Italy (including The Holy Sea), Japan, Jersey, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Monaco, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russia, Saint Pierre and Miguelon, San Marino, Slovakia, Slovenia, Spain, Svalbard, Sweden, Switzerland, Turkey, Ukraine, United Kingdom, United States of America, **United States Virgin Islands**

LDS, countries with less developed statistical systems (e.g. Brazil), 177 countries


Afghanistan, Albania, Algeria, American Samoa, Angola, Anguilla, Antigua and Barbuda, Argentina, Armenia, Aruba, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belize, Benin, Bermuda, Bhutan, Bolivia, Bosnia-Herzegovina, Botswana, Brazil, Brunei Darussalam, Burkina Faso, Burundi, Cambodia, Cameroon, Cape Verde, Cayman Islands, Central African Republic, Chad, Chile, China, Colombia, Commonwealth of Dominica, Comoros, Congo, Democratic Republic Congo, Cook Islands, Costa Rica, Cuba, Djibouti, Dominican Republic, East Timor, Ecuador, Egypt, El Salvador, Eguatorial Guinea, Eritrea, Ethiopia, Falkland Islands, Federated State of Micronesia, Fiji, French Guiana, French Polynesia, Gabon, Gambia, Georgia, Ghana, Grenada, Guadeloupe, Guam, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hong Kong, India, Indonesia, Iran, Iraq, Israel, Ivory Coast, Jamaica, Jordan, Kazakhstan, Kenya, Kiribati, Korea, Dem. People's Rep. of Korea, Kuwait, Kyrgyz Republic, Lao People's Democratic Republic, Lebanon, Lesotho, Liberia, Libyan Arab Jamahiriya, Macao, Macedonia, Madagascar, Malawi, Malaysia, Maldives, Mali, Marshall Islands, Martinique, Mauritania, Mauritius, Mayotte, Mexico, Mongolia, Montserrat, Morocco (including Wester Sahara), Mozambique, Myanmar, Namibia, Nauru, Nepal, Netherland Antilles, New Caledonia, Nicaragua, Niger, Nigeria, Niue, Norfolk Island, Northern Mariana Islands, Occupied Palestinian Territory, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Pitcairn, Puerto Rico, Qatar, Republic of Moldova, Reunion, Rwanda, Saint Helena, Saint Kitts and Nevis, Saint Lucia, Saint Vincent, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia and Montenegro (including Kosovo), Seychelles, Sierra Leone, Singapore, Solomon Islands, Somalia, South Africa, Sri Lanka, Sudan, Suriname, Swaziland, Syrian Arab Republic, Taiwan, Tajikistan, Thailand, Togo, Tokelau, Tonga, Trinidad and Tobago, Tunisia, Turkmenistan, Turks and Caicos Islands, Tuvalu, Uganda, United Arab Emirates, United Rep. of Tanzania, Uruguay, Uzbekistan, Vanuatu, Venezuela, Viet Nam, Wallis and Futuna, Western Samoa, Yemen, Zambia, Zimbabwe

70 Human Activities are analysed and reduced to 7 emission groups, with 2 uncertainty categories

Category	EDGAR code	EDGAR note	IPCC2006 code	IPCC2006 note
	ENE	Power industry	lAla	Main Activity Electricity and Hest Broduction
	IND	Combustion for manufacturing	1 A2	Manufacturing Industries and Construction
			1 A4+	Other Sectors (in Ruel Combustion Activities 1A)
Energy Fugitive Industrial Processes Solvents and Products use	RCO	Energy for buildings	1A5a+	Statismury (in Non-Specified category)
	[Energy for containings	l A5bi+ l A5bii	Mobile (water-borne component)
		Oil refinences and Transformation industry	lAlb+	Petroleum Refining (in Pael Combustion activities 1A)
	REF_TRF		1B2aiii4+	Refining (in OIL and Natural gas 1 B 2)
			lAlr+	Manufacture of Solid Ruels and Other Hungy Industries
Energy			1 A5b iii+ 1 B 1 c+	Mobile (other) Solid Parl Transformation
			1B2am6+	Others (in OIL and Natural gas 1 B 2)
			1 B 2 b iii 3	Processing (in Oil and NATURAL GAS 1 B 2)
	TNR Aviation CDS	Aviation climbing&descent	LA3a_CDS	Ciril Aristinn – climbingfidescent
	TNR Aviation CRS	Aviation cruise	1 A3a_CRS	Citril Atriation – cruise
		Aviation landing&takeoff	1 A3a LTO	Ciril Aristinn – landing@takeoff
	TNR Aviation SPS	Aviation supersonic	LA3a SPS	Citril Aristian – supersonia
	Title Tividion bio		1.A3r+	Railways
	TNR Other	Railways, pipelines, off-road	1.A3#	Other Transportation – Pipeline Transport
		transport		Other Transportation – Off-road
	TNR_Ship	Shipping	1 KA 1	Water-borne Novigation
	TRO	Road transportation	1 A3 b	Road Transportation
			1B1a+	Coal Mining and Handling (in Solid Parl 181)
			1B2aii+ 1B2aiii2+	Flaring (in GL and Natural gas 1 B 2) Brothertion and Upgrading (only fugitive emissions!)
			1B2am3+	Dunsport (only fugitive emissions!)
Fugitive	PRO	Fuel exploitation	1B2bii+	Floring (in Oil and NATURAL GAS 1 B 2)
-6		a des de prostations	1B2biii2+	Production (only fugitive enissions!)
			1B2biii4+	Transmission and Storage (only fugitive emissions!)
			1 B 2 b iii 5+ 1 C	Distribution (only fugitire enissions!) Carbon Dioxide Transport and Storage
			2 B 1+	Jamonia Booksia interport and storage Jamonia Broduction (in Chemical Industry 3B)
			2B2+	Ninic Acid Production
	СНЕ	Chemical processes	2B3+	Adapic Acid Production
			2B4+	Caprolactan, Gyoccal and Gyoccylic Acid Production
			2B5+ 2B6+	Carbide Production Titunium Disocide Production
			2BS+	Petrochemical and Carbon Black Broduction
	FOO PAP	Food and Paper	2H	Other (in Industrial Processes and Product Use 2)
	_	· ·	2.0.1+	from and Steel Broduction (in Metal Industry 2C)
Industrial Processe	IRO	Iron and steel production	2.02	Percellegs Production
	NEU		2D1+	Lukricant Use (in Non-Hungy Products from Fuels and Sohrent Use 2D)
		Non energy use of fuels	2 D2+ 2 D4	Penffin Wer Use Other
	nfe	Non-ferrous metals production	2.03+	Alma injum. Production (in Metal Industry 2C)
			2.0.4+	Magnesian Roduction
			3.0.5+	Lead Production
			2.0.6+	Zinc Production
	200		3.0.7	Other
	NMM	Non-metallic minerals production	2 A 2 B 9+	Minural hubstry (in Industrial Recesses and Reduct Use 2) Fingrodysmical Reduction (in Chemical Industry 2B)
L			1B+	Rectronics Industrial Processes and Product Use 2)
	PRU_SOL	Solvents and products use	2 F+	Brothact Uses as Substitutes for Oxone Depleting Substances
Products use		P	2.G+	Other Product Manufacture and Use
			2 D3	Solvent Use (in New-Hungy Broducts from Puels and Solvent Use 2D)
			3.03+	Liming (in Aggregate Sources and Non-COI Haissians Sources on Land 3C)
Agriculture	AGS	Agricultural soils	3.C.4+	Tea Application Direct NO Binissions from Managed Soils
			3.C.7	Rice Cultivations
	AWB	Agricultural waste burning	3.C.1b	Biomass Burning in Cropland (in Biomass Burning 3C1)
		Enteric fermentation	3A1	Biteric Rementation (in Livestock 3A)
		Manure management	3 A2	Manro Maugenest
	SWD INC	Solid waste incineration	4.C	Incineration and Open Burning of Waste (in Waste 4)
L			4 A+	Solid Waste Disposal
Waste	SWD_LDF	Solid waste landfills	4 B	Biological Treatment of Solid Waste
	WWT	Waste water handling	4 D	Wastewater Treatment and Dischurge
Other	FFF	Fossil Fuel Fires	5 B	Other - Possil Puel Pires (in Other 5)
	IDE	Indirect Emissions	5 A	Indirect N2 O Haissions from the Atmospheric Deposition of Nitrogen in No; and NHB (in Other 5)
			B.C.5+	Indirect N2 O Haissions from the Annospheric Deposition of Petrogen in Post with 1915 (in Other 5) Indirect N2 O Haissions from Managed Soils (in Agriculture, Forestry and Other Land Use 3)
	N2O	Indirect N2O from agriculture	3.06	Indirect NOO Baissions from Manure Management (in Agriculture, Porestry and Other Land Use 3)
				, and the second


CO₂ HUMAN EMISSIONS

CO2 Human Emissions global budget for 2015

Gr. Nº	Group name	Note	E-s, Mton	
1	ENERGY_S	Power industry - super emitting power plants		
2	ENERGY_A	Power industry - average emitting power plants	13,704	
3	MANUFAC- TURING	Combustion for manufacturing	6,183	
		Iron and steel production	234	
		Non-ferrous metals production	91	
		Non energy use of fuels	10	
		Non-metallic minerals production		
		Chemical processes		
4	SETTLE-MENTS	Energy for buildings	3,322	
		Solvents and products use	61]
		Solid waste incineration	137	
5		Aviation cruise		7
	AVIATION	Aviation climbing&descent	815	
		Aviation landing&takeoff		
6		Road transportation	5,530	
	TRANS-PORT	Shipping	819	
		Railways, pipelines, off-road transport	255	
7		Agricultural soils	99	
	OTHER	Oil refineries and Transformation industry	1,917	
	OTHER	Fuel exploitation	258	
		Coal production	48	1

Country level CO2 emissions in 2015

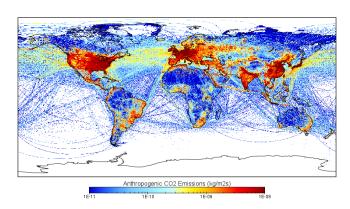
Connecting CO2 Inventories to Ensemble simulations

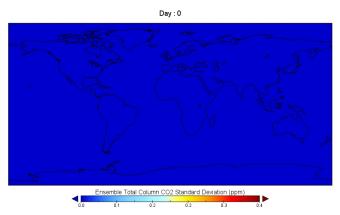
Initial Concentration

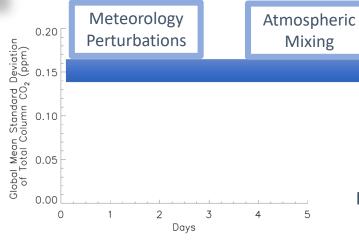
Informed from high resolution (~9km) nature simulation

CHE Emissions

Perturbed inventory estimates based on uncertainties

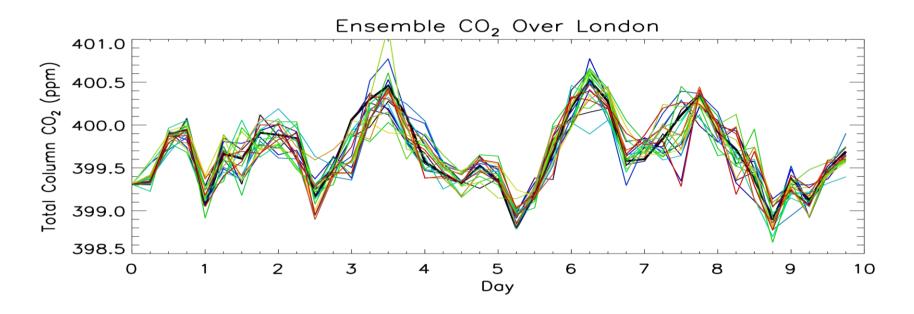

Meteorology transport


Introduce tracers to current EPS framework


Perturbed Ensemble Simulations Three simulation types: Meteorology **Emissions** Resulting Information Perturbed Fixed **Transport** Error Fixed Perturbed Transport Jacobian Perturbed Perturbed **Transport** Jacobian with Noise

Ensemble-based Inversion System

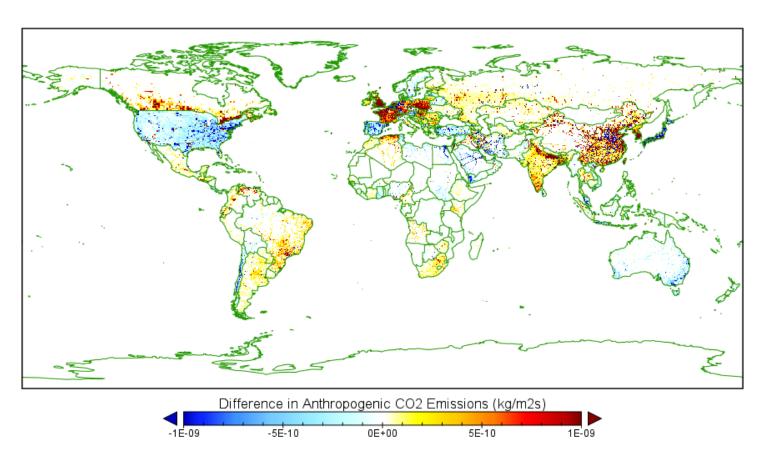
Test multiple inversion systems to estimate sector/national posterior fluxes



Model error spread takes ~2 days to spin-up.

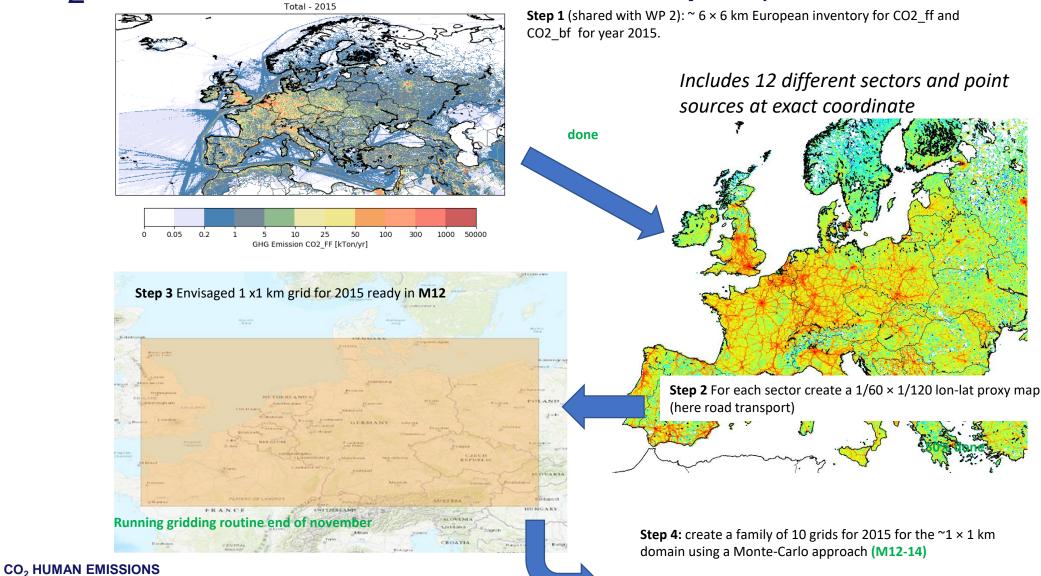
CO₂ HUMAN EMISSIONS

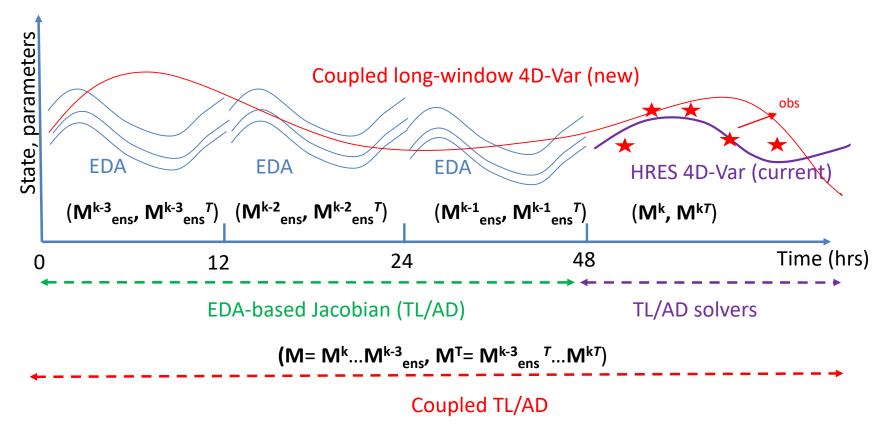
14


Ensembles of CO2 Concentration (transport precision)

Example for London of a **10-day** CO2 concentration **ensemble simulation**: with **fixed anthropogenic emissions** and **perturbed meteorology and biogenic emissions**.

The meteorological spread correspond to 24-hour forecast range.


Ensembles of CO₂ Surface Emission (prior precision)


Example of total difference between two emission perturbations (by country and by emission group).

CO₂ HUMAN EMISSIONS 16

CO₂ Surface Emission over Europe (towards 1-km)

Ensembles Data Assimilation/Coupled 4D-Var for CO₂

- Same EDA-based least-square approximation of the transport Jacobian M^{k-i}ens and same trajectory used at each outer-iteration (transport is linear).
- Emission posterior error covariances updated for each long-window 4D-Var cycle using Hessian information (Ritz pairs) use only observations from current 12hrs 4D-Var window.
- ➤ Ability of the EDA-based system to propagate sensitivities depends on the degree of overlapping between EDA members across 4D-Var windows → requires testing.

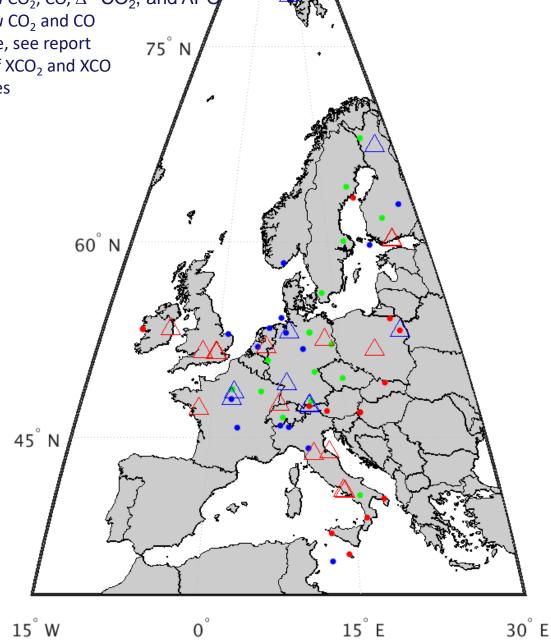
CO₂ HUMAN EMISSIONS 18

n-situ observations Other in situ site: variable, see report

• ICOS level one site: in situ CO₂, CO, Δ^{14} CO₂, and APC • ICOS level two site: in situ CO₂ and CO

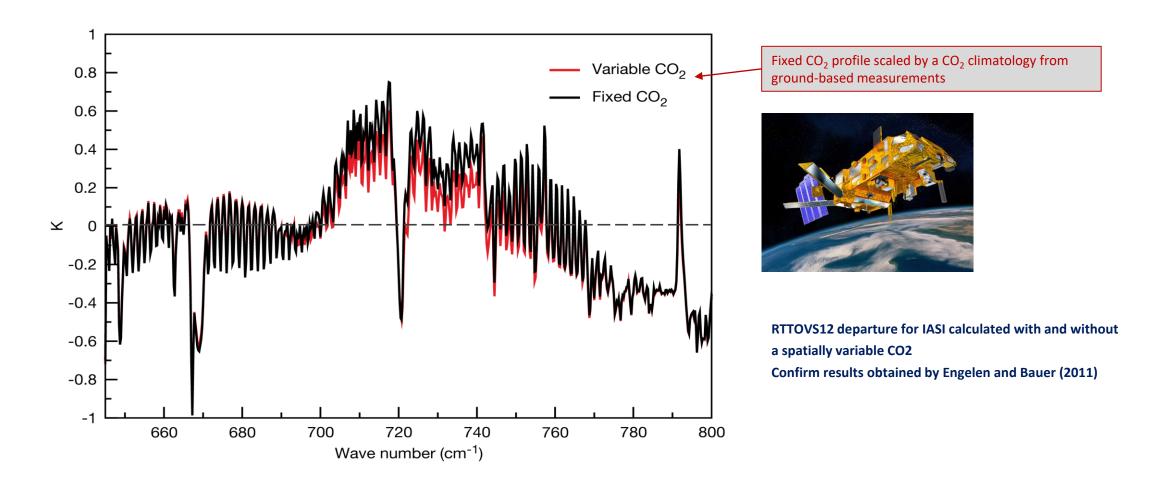
Δ TCCON measurements of XCO₂ and XCO

△ Urban CO₂ flux tower sites


Report summarizing current European in situ measurement capability (D4.1)

Specifically targeting the following quantities:

- Surface-based in situ CO₂, CO, Δ¹⁴CO₂, and APO
- Aircraft-based in situ CO₂ and CO
- Ground-based XCO₂ and XCO
- Urban CO₂ flux tower measurements, which can be useful for estimating time factors


Uncertainties, measurement locations and measurement period were summarized.

The report was submitted in June, 2018.

Thanks to Frederic Chevallier

Satellite observations

ECMWF Improved fit to IASI illustrate the relevance of CO₂ for NWP data assimilation

CO₂ HUMAN EMISSIONS 20

High Level Requirements for CHE System

km & daily scales

1.Detection of emitting hot spots such as megacities or power plants.

2.Monitoring the hot spot emissions to assess emission reductions/increase of the activities.

3.Assessing emission changes against local reduction targets to monitor impacts of the NDCs.

4.Assessing the national emissions and changes in 5-year time steps to estimate the global stock take.

Summary and outlook

Monitoring CO2 Human Emission with the support of EO data requires enhancing existing mapping modelling and data assimilation capabilities

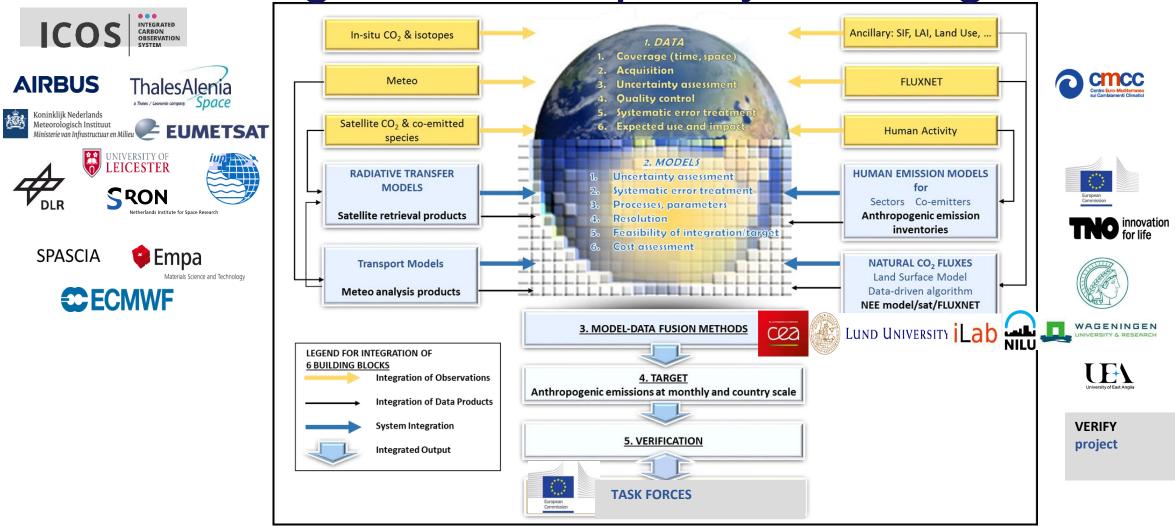
CHE project builds on existing assets, benefit from C3S and CAMS expertise and infrastructure, a from strong consortium and projects partners

CO2 is an Essential Climate Variable & Global Climate Indicator that presents observational and assimilation challenges (e.g. timeliness). GCOS coordination and support is essential along with IG3IS and the other actors involved...

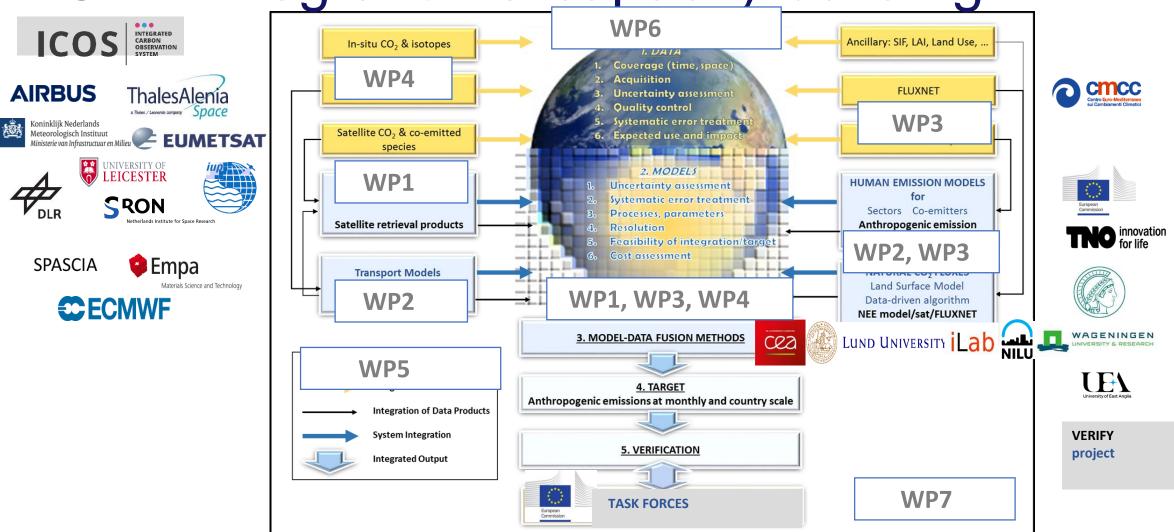
23

TANSAT

CO₂ HUMAN EMISSIONS


SERVICE ELEMENTS REQUIREMENTS

Extra slides for Q&A



CHE Integration & capacity building

CHE Integration & capacity building

CHE PROJECT STRUCTURE

Extra slides for Q&A

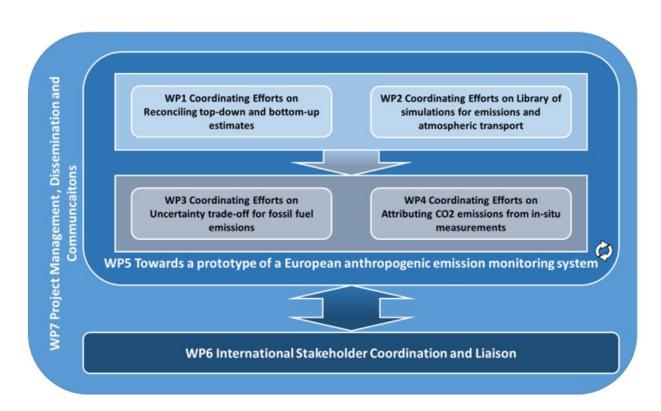
CHE Leadership and Expertise

CHE leadership & expertise ensure Monitoring of the project & its progress:

WPL in WP1 Corinne Le Quéré (UEA) and Wouter Peters (WAGENINGEN)

WPL in WP2 Dominik Brunner (EMPA) and Hugo Denier van der Gon (TNO)

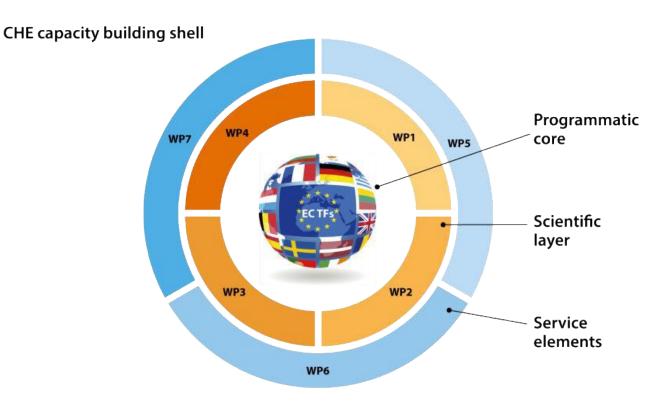
WPL in WP3 Greet Maenhout (JRC) and Marko Scholze (LUND)


WPL in WP4 Frédéric Chevallier (LSCE) and Julia Marshall (MPI-BGC)

WPL in WP5 Anna Agusti-Panareda and Gianpaolo Balsamo (ECMWF)

PIL in WP6 Richard Engelen (ECMWF)

PM in WP7 Daniel Thiemert (ECMWF)


COO Gianpaolo Balsamo (ECMWF)

Work-Package Leaders (WPL), Project International Liaison (PIL), Project Manager (PM), Project Coordinator (COO)

CHE Structure and Work Package Breakdown

CHE, H2020-Coordination and Support Action

CHE WBS

WP1 Coordinating Efforts on Reconciling top-down and bottom-up estimates, led by UEA 60.5 PM (39M, 1-39)

WP2 Coordinating Efforts on Library of simulations for emissions and atmospheric transport, led by EMPA (64.5 PM)

WP3 Coordinating Efforts on Uncertainty trade-off for fossil fuel emissions, led by ULUND (69.5PM)

WP4 Coordinating Efforts on Attributing CO2 emissions from in-situ measurements, led by CEA (57.0 PM)

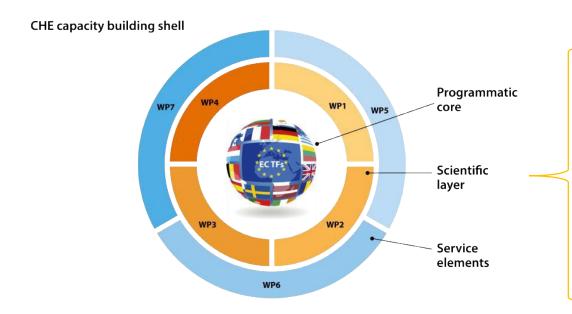
WP5 Towards a prototype of a European anthropogenic emission monitoring system, led by ECMWF 55.25 PM (24M 15-39)

WP6 International Stakeholder Coordination and Liaison, led by ECMWF (19.5 PM)

WP7 Project Management, Dissemination and Communication, led by ECMWF (18.0 PM)

CO₂ HUMAN EMISSIONS 30

CHE Connectivity & Stewardship


CHE Project steering is further ensured by the following roles:

External Advisory Board (EAB) and External Expert Group (EEG)

EAB Han Dolman (Chair of EAB, VU NL), Pierre-Yves Le Traon (CMEMS, France), Mark Dowell (CLMS, INT), Sonia Seneviratne (ETH, Switzerland), Guy Brasseur (WCRP, Germany), Werner Kutsch (ICOS, Finland)

EEG Peter Rayner (Chair of EEG, U MELBOURNE, AU), Kevin Gurney (ARIZONA SU, US), Kevin Bowman (NASA JPL, US), Arlyn Andrews (NOAA, US), Pep Canadell (CSIRO, AU), Saroja Polavarapu (ECCC, Canada), Jing M. Chen (U NANJING, China, U TORONTO, Canada), Lu Daren (CAS, Tansat-PI, China), Chris O'Dell (CSU, US), Shamil Maksyutov (CGER/NIES, Japan), Paul Palmer (EDINBURGH, UK), Heather Graven (IMPERIAL, UK) Alex Vermeulen (Carbon Portal, Sweden)

CHE: WP1-2-3-4 Overview

WP1 Coordinating Efforts on **Reconciling** top-down and bottom-up estimates

WP2 Coordinating Efforts on **Library of simulations** for emissions and atmospheric transport

WP3 Coordinating Efforts on **Uncertainty trade-off** for fossil fuel emissions

WP4 Coordinating Efforts on **Attributing** CO2 emissions from in-situ measurements

32


WP1: Reconciling top-down and bottom-up estimates

Lead: Wouter Peters/Maarten Krol (WU, Netherlands) Corinne LeQuere (UEA, United Kingdom)

Participants: UEA, ECMWF, ADS, SAS, ADS GMBH, EUMETSAT, iLAB, CEA, ULUND, TAS, UB, ULEIC, WU

WP1 include

- Task 1.1: Deliver a cross section of remote-sensing data products needed in the data assimilation chain to constrain anthropogenic carbon emissions
- Task 1.2: Develop novel techniques to constrain anthropogenic and natural carbon emissions from joint surface and space- based carbon cycle data
- Task 1.3: Reconcile top-down and bottom-up carbon dioxide source/sink estimates at multiple levels of integration using a community access platform

 Task 1.4: Document current shortcomings and needed developments in space-based monitoring of fossil fuel CO2 emissions

CO₂ HUMAN EMISSIONS 33

WP2: Library of simulations - emissions & transport

Lead: Dominik Brunner (Empa) & Hugo Denier van der Gon (TNO)

Participants: DLR, ECMWF, JRC, MPG, SPASCIA, SRON, TNO

Generate library of realistic CO₂ forward simulations - "nature runs"

- Simulations for present-day and future emission scenarios
- From global to regional to point source scale
- Provide simulation input for other WPs

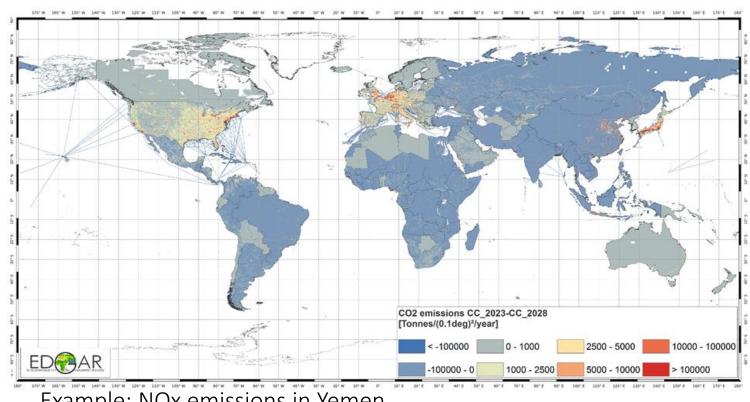
Support assessment of requirements for a future CO₂ space missions

- Generate collection of synthetic satellite observations with realistic error characteristics, by combining model output with orbit simulations
- Investigate influence of aerosols on CO₂ retrieval in urban plume
- Investigate influence of small-scale and fluctuating nature of power plant plumes on capability to detect and quantify such plumes

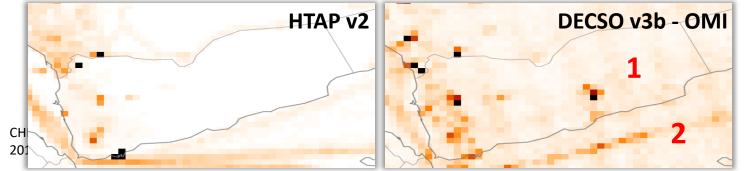
WP3: Uncertainty trade-off - fossil fuel emissions

Lead: Marko Scholze (ULUND) and Greet Janssens-Maenhout (JRC)

Participants: ECMWF, CMCC, ULUND, iLab, JRC, KNMI, CEA-LSCE, MPG-BGC, TAS, TNO, UEA


Provide high-resolution (~km, hourly) prior biogenic fluxes with quantified uncertainties based on upscaling of eddy covariance flux measurements

Provide prior gridded anthropogenic emissions and their uncertainties and per sector


Evaluate the current status and possible improvements from enhanced space-borne and in-situ observation scenarios for fossil CO2 emissions quantification based on OSSEs and QND studies

- high-resolution inverse transport modelling of CO2
- high-resolution inverse transport modelling of CO2 and co-emitted species (NOx)
- advanced carbon cycle-fossil fuel data assimilation systems

WP3: Estimation of emissions uncertainties

Example: NOx emissions in Yemen

T3.1: Estimate biogenic fluxes and associated uncertainties from independent observations (MPG-BGC, by March 2019)

T3.2: Provide emission uncertainties & correlations from inventories and statistics for global emission gridmaps of EDGAR (JRC, by March 2019)

T3.3: Explore the role of satellite observations of NOx for estimation of fossil CO2 emissions (KNMI, by September 2019)

T3.4: Conduct OSSEs with an inverse transport modelling system to establish inversion strategy (CEA-LSCE, by June 2020)

T3.5: Perform QND experiments with advanced data assimilation systems (CC-FF-DAS) to establish inversion strategy (LUND/iLab, by June 2020)

WP4: Attributing CO2 emissions from in-situ measurements

Lead: Frédéric Chevallier, Julia Marshall

Participants: CMCC, CEA-LSCE, EMPA, MPG-BGC, NILU, TNO, UEA, ULUND

- 1. Explore the practical implications of distinguishing between anthropogenic (meaning fossil fuel emissions, and also non-fossil waste burning, biofuels, etc.) vs. biogenic CO₂ fluxes.
- 2. Optimization of the space-time sampling of ¹⁴CO₂, CO and APO.
- T4.1 High-resolution scenarios of CO₂ and CO emissions (Lead: TNO, M1-M12)
- T4.2 Attribution Problem (Lead MPG:, M1-M33)
- T4.3 Practical Recommendations (Lead: CEA, M25-M36)

<u>Outcomes</u>

Survey current European in-situ observation capacity.

Define an operational strategy to separate anthropogenic CO₂ emissions from biogenic fluxes at regional and global scales through the use of additional tracers.

Shape the appropriate dimension and distribution of the corresponding in-situ network.

Gianpaolo Balsamo Project Coordinator - ECMWF

