Role of sources and sinks in atmospheric greenhouse gas variability

Joe McNorton¹, Martyn Chipperfield^{1,2}, Chris Wilson^{1,2}, Manuel Gloor³, Ed Dlugokencky⁴, Jim White⁵

NERCE SCIENCE OF THE ENVIRONMENT

- 1. ICAS, University of Leeds. UK
- 2. National Centre for Earth Observation. UK
- 3. School of Geography, University of Leeds. UK
- 4. ESRL GMD, NOAA. USA
- 5. Institute of Arctic and Alpine Research, University of Colorado. USA

Current work on methane (at University of Leeds)

Methane (CH₄) is the second most important long-lived anthropogenic greenhouse gas. Since 2007 the growth rate has increased noticeably, the reason for this remains unexplained (1).

We performed a model synthesis inversion to fit TOMCAT CH_4 and $\delta^{13}C$ to surface sites by varying sources and sinks (2). Results show a prolonged decrease in OH since 2007 and increasing energy sector emissions (3).

For the first time we include measurements of δ^{13} C in our inversion, which provides improved representation of not only CH₄ but also δ^{13} C variability.

(1) Global surface CH_4 (ppb) from NOAA sites (black line) from 2005 to 2015. Also shown are global surface NOAA $\delta^{13}CH_4$ (blue line).

(2) Annual average global CH₄ emissions by sector and region for prior (grey) and posterior (coloured) estimates.

(3) CH_4 emissions from different sectors for global prior and posteriors. global OH estimates are displayed for the same period (top left). Shaded region shows posterior error.

Representation of anthropogenic CO₂ emissions in IFS (Future work at ECMWF)

Future work will move from combined natural and anthropogenic CH_4 to the anthropogenic component of the more abundant, less reactive greenhouse gas, CO_2 .

The work will focus on:

- Introducing mapped urban CO_2 emissions on mapping and inventories (e.g. EDGAR) into the IFS (4, 5, 6).
- Developing a model to simulate anthropogenic CO_2 emissions from residential heating.
- Supporting future CO_2 anthropogenic emissions monitoring systems.
- Developing estimations of required perturbations of CO₂ fluxes as ensemble simulation input to aid uncertainty estimates in atmospheric CO2 concentrations.
- Analysing and evaluating the uncertainty within the integrated system in collaboration with CHE Project Partners.

(4) Emissions from fuel combustion in commercial and, institutional buildings and households from a 0.5° by 0.5° region of 6 major cities taken from EDGAR v4.3.2 (Janssens-Maenhout *et al.*, 2017).

Latitude

Sine

(5) Global average CO_2 emissions from anthropogenic sources for 2012 taken from EDGAR v4.3.2 (Janssens-Maenhout *et al.*, 2017).

(6) Zonally averaged CO_2 emissions from fuel combustion in commercial and, institutional buildings and households between 1970 and 2012 taken from EDGAR v4.3.2 (Janssens-Maenhout *et al.*, 2017).

