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INTRODUCTION:	The	increasing	availability	of	satellite-based	observations	of	atmospheric	greenhouse	gas	(GHG)	(e.g.,	GOSAT,	OCO-2)	offers	an	unprecedented	opportunity	to	better	monitor	and	understand	the	global	carbon	cycle.	Current	
atmospheric	source	inversion	systems	using	large	satellite	datasets	are	often	limited	by	the	computational	cost	of	performing	long-term	inversions	as	well	as	quantifying	the	associated	uncertainties.	Previous	approaches	have	relied	on	various	
dimension	reduction	techniques	to	make	those	computations	more	tractable,	although	they	have	often	fallen	short	of combining	both	theoretical	optimality	and	computational	scalability.	To	address	those	limitations,	we	introduce	a	new	
approach	for	high-dimensional	GHG	source	inversions,	which	combines	cutting-edge	randomization	methods	for	large	matrices	decomposition	and	optimal	dimension	reduction	techniques	that	maximize	observational	constraints.	The	
resulting	algorithm	dramatically	improves	the	computational	scalability	of	the	inversions.	An	additional	and	equally	useful	feature	of	this	method	is	its	ability	to	provide	as	a	by-product	of	the	optimization	the	spatiotemporal	flux	patterns	that	
are	independently	and	most	constrained	by	the	observations	along	with	their	associated	posterior	errors.	Such	diagnostics	are	crucial	to	better	understand	the	information	content	of	satellite-based	observations	used	in	current	GHG	source	
inversion	systems	and	enable	to	answer	critical	questions	such	as:	can	current	satellite	observations	provide	seasonal	to	sub-seasonal	constraints	on	the	carbon	cycle?	At	which	spatial	resolutions	can	those	observations	add	significant	
information	to	the	prior	(bottom-up)	estimates?	Those	aspects	are	illustrated	with	a	pseudo-experiment	based	on	a	monthly	methane	source	inversion	over	North	America	using	GOSAT	XCH4	column	observations.
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Current	&	Future	work

ØThe	method	has	been	be	extended	to	non-linear	
inverse	problems	such	as	incremental	4D-Var	by	
replacing	the	iterative	conjugate-gradient	
minimization	by	a	randomized	SVD	approach.

ØThe	optimal	projection	framework	can	be	applied	to	
error	tuning	approaches	(e.g.,	Desroziers and	Ivanov	
(2001))	to	provide	fast	and	spatially	resolved	prior	
(i.e.,	bottom-up)	error	estimates.

Optimal	Dimension	Reduction

Truncated	Singular	Value	Decomposition	(SVD)

Prior-preconditioned	Hessian

Posterior	mean	of	projected	Bayesian	problem

Projection	operator
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Formalism	and	Notations
• Bayesian	framework:

• Maximum	a	posteriori	(normal	distribution):

p(x|y) =
p(y|x)p(x)∫
p(y|x)p(x)dx

priorlikelihood
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Definition 2.1. A function H : <n ! <n is said to be B-di↵erentiable at the
point z if (i) H is Lipschitz continuous in a neighborhood of z, and (ii) there ex-
ists a positive homogeneous function BH(z) : <n ! <n, called the B-derivative
of H at z, such that

lim
v!0

H(z + v)�H(z)�BH(z)v

kvk = 0.

The function H is B-di↵erentiable in set S if it is B-di↵erentiable at every point
in S. The B-derivative BH(z) is said to be strong if
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(v,v0
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kv � v0k = 0.
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with:
forward	model data prior

model-data	error	covariance prior	error	covariance

Dimensions:				
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2 Formalism
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⇤ = diag(�i) (58)

:	nxn
:	mxn
:	mxm
:	n
:	m

Scalable	Computation	of	the	Optimal	Projection
ØStandard	matrix-free	SVD	algorithms	
based	on	Krylov subspace	approach:
• Symmetric	operator:	Lanczos.
• General	operator:	Arnoldi.
àNumerically	unstable.
àSequential:	computationally	
expensive.	

Ø Randomized	SVD of	large	matrices	
(Halko et	al.,	2011):
• Excellent	convergence	

properties	in	general.
• Inherently	stable.
• Parallel implementation.
• Cheap	probabilistic	posterior	

estimate	of	SVD	accuracy.

G

η1
η2

ηk

...

μ1
μ2

μk

...
QTG	

QTG=ÛΣWT U=QÛ

Dimension	kxn Dimension	nxn

G≈UΣWT

Principles	of	randomized	SVD

Probabilistic	error	
estimation	

(no	additional	cost)

Q orthonormal	basis	
of	{μ1,	μ2,…, μk}

Random	inputs	ηi

Important	Properties
ØDiagonalization	of	the	averaging	kernel	matrix:

ØObservations	are	most	informative	along	the	first	p
eigenvectors																																		.

ØMinimization	of	averaged	relative	error:
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Definition 2.1. A function H : <n ! <n is said to be B-di↵erentiable at the
point z if (i) H is Lipschitz continuous in a neighborhood of z, and (ii) there ex-
ists a positive homogeneous function BH(z) : <n ! <n, called the B-derivative
of H at z, such that

lim
v!0

H(z + v)�H(z)�BH(z)v

kvk = 0.

The function H is B-di↵erentiable in set S if it is B-di↵erentiable at every point
in S. The B-derivative BH(z) is said to be strong if

lim
(v,v0

)!(0,0)

H(z + v)�H(z + v0)�BH(z)(v � v0)

kv � v0k = 0.
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Definition 2.1. A function H : <n ! <n is said to be B-di↵erentiable at the
point z if (i) H is Lipschitz continuous in a neighborhood of z, and (ii) there ex-
ists a positive homogeneous function BH(z) : <n ! <n, called the B-derivative
of H at z, such that

lim
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The function H is B-di↵erentiable in set S if it is B-di↵erentiable at every point
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Definition 2.1. A function H : <n ! <n is said to be B-di↵erentiable at the
point z if (i) H is Lipschitz continuous in a neighborhood of z, and (ii) there ex-
ists a positive homogeneous function BH(z) : <n ! <n, called the B-derivative
of H at z, such that
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independently	constrained	modes relative	contribution	from	observations
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, i = 1, ..., n} are the diagonal elements
of ⇤.

Proof. Let us first prove (38)-(39). The matrix Q
dof

can be rewritten:

Q
dof

= B1/2HT R�1/2(R�1/2HBHT R�1/2 + Id)�1R�1/2HB1/2 (43)

= B1/2HT R�1/2WT (Id � ⇤(Id + ⇤)�1)WR�1/2HB1/2, (44)

where B1/2HT R�1/2 = VT ⇤1/2W is the SVD of the square-root of the prior-
preconditioned matrix cH

p

and the Shermann-Morrison-Woodbury formula was
applied to derive (R�1/2HBHT R�1/2 + Id)�1 = WT (Id � ⇤(Id + ⇤)�1)W.
Replacing the square-root of B1/2HT R�1/2 by its SVD in (44) and using the
fact that WWT = Id, one obtains:

Q
dof

= VT ⇤ (I + ⇤)�1 V

To prove (40)-(42), we first use formulas (3), (6), and (9) for xa, Pa and A,
respectively, and substitute Q

dof

in them to obtain the following expressions:

xa = B1/2(Id � Q
dof

)B1/2HT R�1d (45)

Pa = B1/2(Id � Q
dof

)B1/2 (46)

A = B1/2Q
dof

B�1/2 (47)

Method:
ØA	randomized	SVD	algorithm	is	used	to	compute	a	truncated	eigendecomposition
of	the	prior-preconditioned	Hessian	(B1/2HR-1HB1/2).

ØThe	posterior	flux	mode,	posterior	errors	and	the	degree	of	freedom	for	signal	
(DOFs)	for	the	reduced	problem	are	computed	analytically	using	the	eigenvectors	
and	eigenvalues	of	the	prior-preconditioned	Hessian.

Ø Only	a	few	methane	fluxes	can	be	resolved	by	the	
observations	at	grid-scale	resolution.

Ø What	are	the	spatial	modes	resolved	by	the	inversion?

Resolution	of	Inversion
(diagonal	of	averaging	kernel	matrix)

1à100%	observation		information
0à100%	prior	information

DOFs=40

Observation	Simulation	System	Experiment	
(OSSE)

• Methane	fluxes	inversion	for	July	2008.
• GEOS-Chem CTM	forward	and	adjoint
models.	
• Nested	North	America	domain	at	
0.5°x0.6°.
• Prior	error	of	40%	of	prior	emissions.
• GOSAT	XCH4 columns	data.
• Control	space	dimension	n=18271.
• Randomized	SVD	to	compute	optimal	
approximation.
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�CO2 is the measured vertical column concentration of CO2,
andXCO2 is a modeled column mixing ratio of CO2. For sim-
plicity, we use a single averaging kernel for each instrument.
A larger ensemble of averaging kernels describing a poten-
tial range of sensitivities is beyond the scope of this study
given the computational cost. However, based on knowledge
of thermal IR (e.g., TES) and total column (e.g., TROPOMI)
retrievals, use of a single averaging kernel is a reasonable
approximation as our study is constrained to Northern Hemi-
sphere summertime where the temperature and sunlight con-
ditions provide a sufficient signal for the present evaluation,
and because our study looks at the relative merits of different
observing approaches.
The prior methane emissions we use are from the

EDGARv4.2 anthropogenic methane inventory (European
Commission, 2011), the wetland model from Kaplan (2002)
as implemented by Pickett-Heaps et al. (2011), the GFED3
biomass burning inventory (van der Werf et al., 2010), a ter-
mite inventory and soil absorption from Fung et al. (1991),
and a biofuel inventory from Yevich and Logan (2003). Fig-
ure 1 shows the total average daily prior methane emissions
for the entire North America nested domain. Strong hotspots
of CH4 sources clearly appear over the Canadian wetlands,
the Appalachian Mountains (an extensive coal mining area)
and densely urbanized areas (e.g., southern California and
the eastern coast). Following previous assessments of the
range of the prior error (Wecht et al., 2014a; Turner et al.,
2015), we assume a relative prior standard error of 40% for
our bottom-up emission inventory in every grid cell. This re-
sults in a 2.9 Tgmonth�1 uncertainty in the total emission
budget over North America, a magnitude comparable to the
correction to the prior budget found in the inversion of Turner
et al. (2015) of 2.3 Tgmonth�1. We assume no prior spatial
error correlations, which means that the matrix B in Eq. (1)
is diagonal. Accurately defining error correlations in bottom-
up inventories is a challenging problem due to the sparsity of
available flux measurements, and is beyond the scope of our
study. However, it is likely that the diagonal B assumption
made in our study is overly optimistic, which may result in
an overestimation of the spatial resolution of the constraints
afforded by the satellite measurements. Note that in our setup
one emission scaling factor is optimized per grid cell; there-
fore, the temporal variability of the emissions is assumed to
be a hard constraint at scales smaller than the assimilation
window.

2.3 Observations and model uncertainties

We consider several instrument configurations for our study,
which are associated with different vertical sensitivities: the
future TROPOMI instrument (2016 launch), which will mea-
sure in the shortwave infrared (SWIR); the Tropospheric
Emission Spectrometer (TES) V005 Lite product (Worden
et al., 2012) (http://tes.jpl.nasa.gov/data/), which consists of
CH4 vertical profile retrievals from thermal infrared (TIR)

Figure 1. Total daily average prior methane emissions for the nested
North America domain (0.5� ⇥ 0.7�).

measurements at 7.58–8.55 µm; and a hypothetical multi-
spectral CH4 profile retrieval, which allows us to capture a
signal in the boundary layer. Since the DOF for the TES re-
trievals is less than 2, we use a pressure-weighted TES XCH4
column instead of the retrieved CH4 profiles. The averag-
ing kernel for the TROPOMI configuration is taken from
the Greenhouse gases Observing SATellite (GOSAT) Proxy
XCH4 v3.2 retrieval described by Parker et al. (2011) (avail-
able from http://www.leos.le.ac.uk/GHG/data/), which con-
sists of CH4 column mixing ratios (XCH4) obtained from
SWIR measurements near 1.6 µm. As noted in Wecht et al.
(2014b), the difference between the TROPOMI and GOSAT
retrievals are of little consequence, as the averaging kernel
for SWIR observations is near unity in the troposphere in
any case. The multi-spectral averaging kernel is derived by
first combining the Jacobians (or sensitivities) of the mod-
eled radiances to methane concentrations from the 1.6 and
8 µm bands. Both the TES and GOSAT retrievals also si-
multaneously estimate interferences such as clouds, albedo,
emissivity, temperature, and H2O. The effects of these in-
terferences can be included by further combining their cor-
responding Jacobians with the methane Jacobians (e.g., Wor-
den et al., 2004; Kulawik et al., 2006; Butz et al., 2010). Con-
straints for methane and the other radiative interferences are
described in Worden et al. (2012) and Parker et al. (2011).
The combination of these Jacobians and constraints are then
used to calculate the averaging kernel. The methane compo-
nent of the resulting multi-spectral, multi-species averaging
kernel is then used for this study. The effect of the interfer-
ences with this simultaneous retrieval approach is to reduce
the overall sensitivity to methane but improve the posteriori
errors. A proof of concept for combining near-IR and IR-
based methane estimates to derive a lower tropospheric esti-
mate is discussed in Worden et al. (2015) using GOSAT and
TES profile retrievals.
Figure 2 shows the column averaging kernel for the

TROPOMI and TES XCH4 retrievals as well as the aver-
aging kernels at three different levels for the multi-spectral

Atmos. Chem. Phys., 16, 6175–6190, 2016 www.atmos-chem-phys.net/16/6175/2016/

Total	daily	prior	CH4 emissions	(EDGAR	v4.2)

Mode	2	(v2)	
(flux	space)

Mode	5	(v5)	
(flux	space)

Mode	1	(v1)	
(flux	space)

=	97%

=	93%

=	84%
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Observational	
constraints

Information	content	analysis:
Ø Singular	vectors	in	flux	space	represent	independently	constrained	patterns.
Ø Singular	vectors	in	observation	space	represent	associated	observational	patterns.
Ø Singular	values	quantify	observational	constraints.Posterior	Sampling

ØThe	square-root	of	the	optimal	posterior	error	covariance	
approximation	can	be	used	to	sample	the	posterior	errors:

ØVery	cheap	compared	to	ensemble	of	inversions	(i.e.,	EDA).
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a simple analytical expression, which prevents its e�cient computation. In Sec-
tion 2.3, we present alternative optimal approximations of the posterior error
covariance matrix whose Frobenius distance to the true posterior error covari-
ance matrix is minimal and whose total error variance is closest to true total
error variance.

Remarks 2.7. The optimal projection defined in Thm. 2.13 has been proposed
by Spantini et al. [2015]. We note that in their study the projected problem
is defined as B⇧

opt

= (E, F,H⇧
opt

,B,R). However, as discussed in the present
study, it is necessary to include a representativeness error, i.e., to use R⇧

opt

instead of R when defining the projected Bayesian problem. Spantini et al.
[2015] overlooked this issue in their analysis, which is taken into account in our
proofs.

Once the truncated eigendecomposition of Q
dof

is available, the posterior
mean and posterior error covariance of the projected problem can be explicitly
expressed as a function of the first k eigenvectors and eigenvalues. Note that
in its current form Q

dof

requires the inversion of a potentially high-dimensional
p ⇥ p matrix. In fact, one can circumvent this di�culty by noting that the
eigendecomposition of Q

dof

can be e�ciently obtained from the eigendecom-
position of an auxiliary matrix called the prior-preconditioned Hessian. The
following properties establish the formulas to compute the maximum-DOFS so-
lution based on that improved implementation:

Proposition 2.14 (Posterior Solution of the maximum-DOFS Projec-

tion). Let us define the prior-preconditioned Hessian cH
p

⌘ B1/2HT R�1HB1/2

and its eigenvalue decomposition cH
p

= V0T ⇤V0. One has:

V = V0 (38)

⌃ = ⇤ (I + ⇤)�1

, (39)

where Q
dof

= VT ⌃V is the eigendecomposition of Q
dof

. Moreover, the solution
of the maximum-DOFS projection can be expressed as:
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a simple analytical expression, which prevents its e�cient computation. In Sec-
tion 2.3, we present alternative optimal approximations of the posterior error
covariance matrix whose Frobenius distance to the true posterior error covari-
ance matrix is minimal and whose total error variance is closest to true total
error variance.

Remarks 2.7. The optimal projection defined in Thm. 2.13 has been proposed
by Spantini et al. [2015]. We note that in their study the projected problem
is defined as B⇧

opt

= (E, F,H⇧
opt

,B,R). However, as discussed in the present
study, it is necessary to include a representativeness error, i.e., to use R⇧

opt

instead of R when defining the projected Bayesian problem. Spantini et al.
[2015] overlooked this issue in their analysis, which is taken into account in our
proofs.

Once the truncated eigendecomposition of Q
dof

is available, the posterior
mean and posterior error covariance of the projected problem can be explicitly
expressed as a function of the first k eigenvectors and eigenvalues. Note that
in its current form Q

dof

requires the inversion of a potentially high-dimensional
p ⇥ p matrix. In fact, one can circumvent this di�culty by noting that the
eigendecomposition of Q

dof

can be e�ciently obtained from the eigendecom-
position of an auxiliary matrix called the prior-preconditioned Hessian. The
following properties establish the formulas to compute the maximum-DOFS so-
lution based on that improved implementation:

Proposition 2.14 (Posterior Solution of the maximum-DOFS Projec-

tion). Let us define the prior-preconditioned Hessian cH
p

⌘ B1/2HT R�1HB1/2

and its eigenvalue decomposition cH
p

= V0T ⇤V0. One has:

V = V0 (38)

⌃ = ⇤ (I + ⇤)�1

, (39)

where Q
dof

= VT ⌃V is the eigendecomposition of Q
dof

. Moreover, the solution
of the maximum-DOFS projection can be expressed as:
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instead of R when defining the projected Bayesian problem. Spantini et al.
[2015] overlooked this issue in their analysis, which is taken into account in our
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is available, the posterior
mean and posterior error covariance of the projected problem can be explicitly
expressed as a function of the first k eigenvectors and eigenvalues. Note that
in its current form Q
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requires the inversion of a potentially high-dimensional
p ⇥ p matrix. In fact, one can circumvent this di�culty by noting that the
eigendecomposition of Q
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can be e�ciently obtained from the eigendecom-
position of an auxiliary matrix called the prior-preconditioned Hessian. The
following properties establish the formulas to compute the maximum-DOFS so-
lution based on that improved implementation:

Proposition 2.14 (Posterior Solution of the maximum-DOFS Projec-
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�w
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red

= S
red

ST

red

where w
i

= R�1/2HB1/2v
i

and the {�
i

, i = 1, ..., n} are the diagonal elements
of ⇤.

Proof. Let us first prove (38)-(39). The matrix Q
dof

can be rewritten:

Q
dof

= B1/2HT R�1/2(R�1/2HBHT R�1/2 + Id)�1R�1/2HB1/2 (43)

= B1/2HT R�1/2WT (Id � ⇤(Id + ⇤)�1)WR�1/2HB1/2, (44)

where B1/2HT R�1/2 = VT ⇤1/2W is the SVD of the square-root of the prior-
preconditioned matrix cH

p

and the Shermann-Morrison-Woodbury formula was
applied to derive (R�1/2HBHT R�1/2 + Id)�1 = WT (Id � ⇤(Id + ⇤)�1)W.
Replacing the square-root of B1/2HT R�1/2 by its SVD in (44) and using the
fact that WWT = Id, one obtains:

Q
dof

= VT ⇤ (I + ⇤)�1 V

To prove (40)-(42), we first use formulas (3), (6), and (9) for xa, Pa and A,
respectively, and substitute Q

dof

in them to obtain the following expressions:

xa = B1/2(Id � Q
dof

)B1/2HT R�1d (45)

Pa = B1/2(Id � Q
dof

)B1/2 (46)

A = B1/2Q
dof

B�1/2 (47)

We then substitute those expressions in formulas (31)-(33) and replace ⇧ by its
optimal solution ⇧

dof

= B1/2V
k

VT

k

B�1/2, which yields:

xa

⇧

dof

= B1/2V
k

VT

k

(Id � Q
dof

)B1/2HT R�1d (48)

Pa

⇧

dof

= B1/2V
k
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k

(Id � Q
dof

)V
k
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k

B1/2 (49)

A
⇧

dof

= B1/2V
k

VT

k

Q
dof

V
k

VT

k

B�1/2 (50)

Noting B1/2HT R�1 = VT ⇤1/2WR�1/2 in (48), and replacing Q
dof

by its SVD
in (48)-(50), one obtains the desired formulas (40)-(42).

Note that an alternative formula can be derived for Eq. (40), which has the
advantage that it does not require to compute the singular vectors {w

i

}:

Proposition 2.15 (Alternative Formulation for Posterior Mean of Max-
imum-DOFS Projection). Using the previous notations, let {(v

i

, �
i

), i =

BFGS	minimization	(40	iterations)

Flux	scaling	factor	increment
-0.70															 -0.23															 0.23												 0.70	 -0.70														 -0.23													 0.23																	0.70	

Flux	scaling	factor	increment

Randomized	SVD	(50	samples)

40X	faster

~48	hours ~72	mins

Optimization:
Ø BFGS	requires	40	iterationsó40	sequential	forward	and	adjoint runs	

(walltime~	2	days).
Ø Randomization	requires	50	samplesó 50	forward	and	adjoint runs	in	parallel	

(walltime~	72	mins).

Computational	Performance


