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INTRODUCTION: The increasing availability of satellite-based observations of atmospheric greenhouse gas (GHG) (e.g., GOSAT, OCO-2) offers an unprecedented opportunity to better monitor and understand the global carbon cycle. Current
atmospheric source inversion systems using large satellite datasets are often limited by the computational cost of performing long-term inversions as well as quantifying the associated uncertainties. Previous approaches have relied on various
dimension reduction techniques to make those computations more tractable, although they have often fallen short of combining both theoretical optimality and computational scalability. To address those limitations, we introduce a new
approach for high-dimensional GHG source inversions, which combines cutting-edge randomization methods for large matrices decomposition and optimal dimension reduction techniques that maximize observational constraints. The
resulting algorithm dramatically improves the computational scalability of the inversions. An additional and equally useful feature of this method is its ability to provide as a by-product of the optimization the spatiotemporal flux patterns that
are independently and most constrained by the observations along with their associated posterior errors. Such diagnostics are crucial to better understand the information content of satellite-based observations used in current GHG source
inversion systems and enable to answer critical questions such as: can current satellite observations provide seasonal to sub-seasonal constraints on the carbon cycle? At which spatial resolutions can those observations add significant
information to the prior (bottom-up) estimates? Those aspects are illustrated with a pseudo-experiment based on a monthly methane source inversion over North America using GOSAT XCH4 column observations.
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Methodology

Formalism and Notations

e Bayesian framework:

______________________________________________

e Maximum a posteriori (hormal distribution):

= x° = Arg max p(x|y)
= Argmin J(x)
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with: J (x)

forward model
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model-data error covariance

I/mportant Properties

» Diagonalization of the averaging kernel matrix:
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Optimal Dimension Reduction

Prior-preconditioned Hessian
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Truncated Singular Value Decomposition (SVD)

Dimensions: _
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Scalable Computation of the Optimal Projection

> Standard matrix-free SVD algorithms
based on Krylov subspace approach:

* Symmetric operator: Lanczos.
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relative contribution from observations

»Observations are most informative along the first p

eigenvectors {B_l/QVz} =1,..;p

» Minimization of averaged relative error:

* General operator: Arnoldi.
- Numerically unstable.
- Sequential: computationally

expensive.

» Randomized SVD of large matrices
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Posterior Sampling

» The square-root of the optimal posterior error covariance
approximation can be used to sample the posterior errors:
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» \Very cheap compared to ensemble of inversions (i.e., EDA).

, D — Posterior samples

(Halko et al., 2011):

Excellent convergence
properties in general.

Inherently stable.
Parallel implementation.

Cheap probabilistic posterior
estimate of SVD accuracy.

Method:

Principles of randomized SVD

Q orthonormal basis
of 1y, Hy ., Myl

Probabilistic error
estimation
(no additional cost)

Random inputs n;
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» A randomized SVD algorithm is used to compute a truncated eigendecomposition
of the prior-preconditioned Hessian (BY2HR-1HB/2).

»The posterior flux mode, posterior errors and the degree of freedom for signal
(DOFs) for the reduced problem are computed analytically using the eigenvectors
and eigenvalues of the prior-preconditioned Hessian.
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Satellite-based methane inversion
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Observation Simulation System Experiment

 Methane fluxes inversion for July 2008.
* GEOS-Chem CTM forward and adjoint

models.

e Nested North America domain at

0.5°x0.6°.

* Prior error of 40% of prior emissions.
* GOSAT XCH, columns data.

* Control space dimension n=18271.
* Randomized SVD to compute optimal

approximation.

Resolution of Inversion

70° N — — —
e . e 3 U 2 &5y & A
e A ;
o ~ =
A 7
T ]
60° N | ~
s ~
ﬁ\/& s P //\
T < B
50° N % - . 4\«3/3
\ -\_‘-J“"\A—_,’\\ @ fi\j
JF - o D}/-—?)_é/’
{ !
40° N . - e f
" " = .
30° N \4_\\ LB
s -
QB\
&5 P -
20° N \_'C %”
% = $ =
10° =L ol 2
! 120° 05° W 90° W 75° W 60° W 45° V
| l - T

(diagonal of averaging kerr

el matrix)

W,
KA
‘\ ;

DOFs=40

1->100% observation information
0—-2>100% prior information

ww@@ T

g%éh |
: /’ﬁ}\—’wa’

1TI50W 12000 T

SO™W

7 SO T F50

0.00 0.03%

0.47 Q.70

» Only a few methane fluxes can be resolved by the
observations at grid-scale resolution.
» What are the spatial modes resolved by the inversion?
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Computational Performance

BFGS minimization (40 iterations)
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Flux scaling factor increment

Optimization:
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Flux scaling factor increment

» BFGS requires 40 iterations<40 sequential forward and adjoint runs

(walltime™ 2 days).
» Randomization requires 50 samples<&
(walltime™ 72 mins).

50 forward and adjoint runs in parallel
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Information content analysis:
» Singular vectors in flux space represent independently constrained patterns.
» Singular vectors in observation space represent associated observational patterns.
» Singular values quantify observational constraints.
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Current & Future work
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»The method has been be extended to non-linear
inverse problems such as incremental 4D-Var by
replacing the iterative conjugate-gradient
minimization by a randomized SVD approach.

»The optimal projection framework can be applied to
error tuning approaches (e.g., Desroziers and Ivanov
(2001)) to provide fast and spatially resolved prior
(i.e., bottom-up) error estimates.



