

The Orbiting Carbon Observatory (OCO) Missions Watching The Earth Breathe... Mapping CO₂ From Space.

How good are CO₂ measurements from space? And are they good enough?

Christopher O'Dell

Colorado State University, Fort Collins, CO, U.S.A.

1st CHE General Assembly February 6, 2018

- Annmarie Eldering, David Crisp, Brendan Fisher (JPL)
- Paul Wennberg (Caltech)
- Robert Nelson, Thomas Taylor, Heather Cronk (Colorado State)
- Debra Wunch, Matthaus Kiel (U. Toronto)
- Aronne Merrelli (U. Wisconsin)
- Hannakaisa Lindqvist (Finnish Met. Inst.)

Basic Near-IR Measurement Approach

- 1. Excellent Level-1 Calibrated Spectra
- 2. Highly accurate retrieved X_{CO2} from those spectra.

3. Excellent Source/Sink inversion models with highly accurate transport.

Biases in CO2 measurements can lead to spurious large+regional scale fluxes

- Basu et al. (2013) found that a 0.8 ppm bias between land and ocean in GOSAT retrievals was enough to turn the global lands from a sink to a source.
- Chevallier et al. (2014) looked at inversions of ACOS and UoL GOSAT data, using mutiple inversions systems.
- Much debate regarding Reuter et al. (2014, 2017) result a larger European sink based on satellite CO2 measurements.

Successes

Data Volume

- OCO-2 now returning about 80,000 full-column measurements of X_{CO2} each day over the sunlit hemisphere
- More data now with improvements in operations and more judicious and effective filtering, in latest version (B8).

https://disc.gsfc.nasa.gov (keyword OCO-2)

Continuing OCO-2 accuracy improvement

8

Each cirlce is one OCO-2 overpass of a TCCON site. All OCO-2 soundings in each overpass have been averaged together.

Land (Nadir+Glint)

20% Reduction in Error Variance

Ocean (Glint)

40% Reduction in Error Variance

7+ years of GOSAT data show accurate representation of regional CO2 seasonal cycles, as compared to TCCON (*Lindqvist et al., 2015, ACP*).

Notable OCO-2 Science So Far (all B7!)

Large-Scale Anthropogenic Emissions (Hakkarainen et al, GRL, 2016)

Ocean Response to 2015-16 El Nino (Chatterjee et al, Science, 2017)

Detection of Urban & Volcanic Emissions (Schwandner et al, Science, 2017)

Quantifying Power Plant Emissions (Nassar et al, GRL, 2017)

Colorad

Global SIF Measurements (Sun et al, Science, 2017)

Tropical Response to 2015-16 El Nino (Liu et al, Science, 2017)

Biases

- Satellites often have *imperfect calibration* (spectral, radiometric, geometric):
 - GOSAT O_2A 1 had a nonlinearity in the radiometer that caused bias.
 - OCO-2 has thin layers of ice build up on its detectors, that "look" like a stratospheric aerosol particle and caused multi-ppm level retrieval CO2 errors.
 - OCO-2 appears to have slight pointing errors that can also lead to multippm level XCO2 errors.
- Spectroscopy is incredibly important, and is often overlooked as an important source of bias.
- Even with perfect instruments and spectroscopy, our *current retrievals exhibit native biases* of several tenths of a ppm in simulation experiments.

California Institute of Techn

- High bias seen in southern hemisphere oceans (glint) March-September, relative to models.
- Determined cause was not:
 - Bias Correction
 - Spectroscopy
 - Ocean surface treatment

Same problem apparent in model comparisons

Apparent Causes of Southern Ocean Glint Bias

60 50 1

40

30

20 SdWO

1.Stratospheric aerosols

Color

- Sometimes small, high-altitude aerosols from volcanic eruptions and other sources are present in amounts to compromise XCO2 retrieval (AODs ~ 0.01).
- Uncorrected stray light due to ice build-up on O₂ A-band detector can also lead to XCO2 retrieval errors.
- Including a small, sulfate aerosol appears to mitigate both problems.
- Reduces biases over ocean everywhere, and over high-latitude land.

Topography-related bias?

Oct 19, 2014 median = 395.67 mean = 395.71 std = 1.58

XCO2 - median(XCO2) [ppm]

Bias sometimes apparent at bright/dark discontinuity, could be due to slight pointing offset?

Matt Kiel & Debra Wunch

Lauder Target observations with gridded B7 $\rm X_{CO2}$. Same pattern seen in RemoTeC retrievals.

Potential solutions show promise (example: Death Valley, USA)

- Small pointing offsets (imperfect pointing knowledge) lead to multi-ppm level XCO2 biases related to ground slope and it's relationship to the satellite view angle.
- This has largely gone unnoticed in OCO-2 data until the last year, as other larger biases took center stage.
- Once these are fixed, we will likely find yet more biases that have been hiding!

Courtesy Cameron MacDonald (U. Waterloo) and Ray Nassar (Environment Canada)

• Define a change in altitude in NE direction:

Spectroscopy errors

- Theoretical errors induced by spectroscopy as inferred from actual retrievals
- They vary in space & time, and can even induce land-ocean biases.

Connor et al., 2016: "Quantification of uncertainties in OCO-2 measurements of XCO₂: simulations and linear error analysis"

Land-Ocean Biases, reduced in latest B8 version, still exist

Spectroscopy Continues to Improve

• O_2A band:

- Speed-dependent Voigt from self-consistent multispectrum fits, including line mixing (Drouin et al., 2017)
- Updated Collision-Induced Absorption
- CO₂ Bands:

Colorad

- New multi-spectrum fits to wider range of temperatures (Benner et al., 2016; Devi et al., 2016)
- Updated H₂O Lines

Fig Courtesy Vivienne Payne

Low biases near clouds over ocean

XCO2 XCO2 (ppm) (ppm) 2.25 406.0 404.0 Fairly frequent 405.5 403.5 Could result in a small 405.0 403.0 oceanic low bias 404.5 402.5 • 3D effects? 404.0 402.0 Solutions currently 403.5 401.5 under investigation by 403.0 401.0 OCO-2 cloud team. 402.5 400.5 0.0 400.0

22

Few successful soundings over dark tropical forests

- Persistent cloudiness in these regions limits # of clear soundings to start.
- Darker surfaces are associated with larger errors, and are currently filtered out conservatively.

PAST

OC-C

EnviSat SCHIAMACHY

These retrieval issues may affect nearly all of these satellites.

- 2 Chinese Satellites recently launched
- GOSAT-2, OCO-3 in 2019
- MicroCarb, GeoCarb approved

- The space-based XCO2 measurement (and to a lesser extent XCH4) is dominated by systematic rather than random errors.
- Systematic errors arise due to both problems with the spectra (e.g. calibration), as well
 as imperfect retrievals due to imperfect spectroscopy, representation of cloud & aerosol
 scattering, and other effects.
- Bias goal should ideally be less than ~0.3 ppm, to enable measurement of surface fluxes on regional scales.
- Most current biases are less than, or on the order of 1 ppm. They vary strongly with scale, surface features, and clouds. Solutions continue to be found and implemented.
- Further, some biases are native to the algorithm, and can be effectively explored with OSSEs.
- Even with current biases, some scientific studies have been possible with current data.
- The goal bias level is ambitious, but is achievable given sufficient time and investment!

Latest Version B8 Data:

https://disc.gsfc.nasa.gov (search OCO-2)

Thank You!! Questions?

Colorad

Colorad

Hypothesis: Stratospheric Aerosols

June 26, 2015 sounding near -28.5 Latitude, 57° SZA

Varied First Guess retrievals show:

- Large range of solutions possible.
- Typical solution:
 - Low sulfate AOD, near surface.
 - Ice retrieved in stratosphere
 - Higher Band 3 chl^2
- Alternate Solution

Colora

- Sulfate moved up near TOA
- Low/no cloud ice retrieved
- Lower Band 3 chi²

S. Crowell, L. Feng, A. Jacobson, J. Liu, A. Schuh)

Cloud streets! Neat.

Filtering tables

Table 1: Quality Filters Applied to Land Soundings All Land Soundings **Lite File Field** Lower Limit **Upper Limit** (> or =)(< or =)1.025 Preprocessors/co2_ratio 1.00 Preprocessors/h2o_ratio 0.88 1.01 Sounding/altitude_stddev 0.0 60.0 Preprocessors/max_declocking_wco2 0.0 0.75 Retrieval/dp -6.0 14.0 Preprocessors/dp_abp 13.0 -10.0 Retrieval/co2_grad_del -80.0 100.0 Retrieval/albedo_sco2 0.05 0.6 Retrieval/rms_rel_wco2 0.25 0.0 Retrieval/s31 0.03 0.4 Retrieval/albedo_slope_sco2 -0.00018 0.001 Retrieval/aod total 0.0 0.5 Retrieval/dws 0.0 0.25 Retrieval/aod water 0.0005 0.1 Retrieval/aod ice 0.00 0.04 Retrieval/ice height -0.5 0.45 Retrieval/aod_sulfate + 0.3 0.0 Retrieval/aod oc Retrieval/aod strataer 0.0 0.02 Retrieval/aod oc 0.0 0.08 Retrieval/aod_seasalt 0.0 0.125

Table 2: Quality Filters Applied to Ocean Glint Soundings						
Ocean Glint Soundings						
Lite File Field	Lower Limit	Upper Limit				
	<u>(</u> ≥ or =)	<u>(</u> ≤ or =)				
Retrieval/eof3_3_rel	-0.3	0.25				
Preprocessors/max_declocking_wco2	0.0	0.2				
Preprocessors/max_declocking_sco2	0.0	0.3				
Retrieval/albedo_slope_sco2	5e-6	7e-5				
Retrieval/rms_rel_wco2	0.0	0.3				
Preprocessors/h2o_ratio	0.88	1.01				
Preprocessors/co2_ratio	0.997	1.018				
Retrieval/dp	-4.0	10.0				
Retrieval/co2_grad_del	-20.0	30.0				
Retrieval/windspeed	1.5	25				
Preprocessors/dp_abp	-50.0	10.0				
Retrieval/ <u>aod_ice</u>	0.0	0.035				

WAS in v7 Note how blue curves do not return to 1

V8 with proper treatment of slow changes in time

Colo

A closer look at Zero Level Offset correction

• ZLO correction changes as ice builds up. It is determined from pixels that are not illuminated, so anything on those detectors is scattered light.

Soon after decon

Later in decon cycle

Colorad

Colorad

Coloi

Filtering

Fraction of Retrieved Soundings Passing Quality Filter

- About 20% of soundings pass prescreening based (clouds, SNR, etc)
- Over ocean, most soundings survive further quality filtering
- Over land, only ~1/3 of soundings survive quality filtering.
- Most soundings over ice & snowcovered surfaces and rainforests are lost due to low signals in the CO2 bands.

Bias Correction Overview

XCOn	ormaatad	$=\frac{XCO_2}{2}$	$_{Raw} - F$	00T[f	p, mode] -	- FEATS	[mode]	
	orrected		TC	CON_A	ADJUST[m	ode]		
wnere:								
			FOOT	PRINT	BIAS (FOOT) (ppm)		
Footprint (fp)	1	2	3	4	5	6	7	8
ALL MODES	-0.36	-0.15	-0.16	-0.14	0.02	0.33	0.13	0.34
			FEAT	URE BL	AS (FEATS) (ppm)	11.000	
LAND (ALL)		- 0.36*dP - 8.5*DWS - 0.029*(co2_grad_del - 15)						
SEA GLINT		$-0.23^{\text{dP}} + 0.09^{\text{co2}} \text{grad_del} + 6.0)$ [second term only applied when co2 grad_del is less than -6]						
					-0	-	,	
	OVERAL	L DIVISOR	(TCCON_A	DJUST)		Meth	od	
LAND GLINT						Target is a	ssigned	
LAND NADIR		0.99	58		Other mode ND/GL a	s derived	from TCC	ON paired
SEA CLINT		0.00	55		Comparisor	to TCCO	N, coastlin	es, model
SEA GEINT		0.99	55		bootstrap	, and com	parison to	models
NOTE! This cons	stant is n	eeded for	the L2 sta	ndard b	ut not Lite p	roducts		
		Varia	ble defin	itions u	sing full/H	DF/path f	or L2 file	S
co2_grad_del			1e6 * Re	trievalRes	ults/co2_vertica	l_gradient_de	lta	
dP	0.01	0.01 * (RetrievalResults/surface_pressure_fph - RetrievalResults/surface_pressure_apriori_fph)						
DWS	ľ		a	od_dust+	aod_water + aod	Lseasalt		
aod_dust (1-ba	ised)	(AerosolRe	sults/aerosol	l_types_re	trieved[1]) * (Ae	rosolResults,	/aerosol_aod	[1,1])
aod_water (1-ba	ised)	(AerosolRe	esults/aeroso	l_types_re	trieved[7]) * (Ae	erosolResults	/aerosol_aod	[7,1)
aod seasalt (1-ba	ised)	(AerosolRe	sults/aerosol	_types_ret	rieved[2]) * (Ae	rosolResults,	aerosol _{aod []}	[2,1])

Parameter Dependencies (Land):

- Good consistency across
 truth Metrics!
- Same parameters as B7
- S31 dependency gone

		N	Sigma [ppm]	dP.	Co2_grad_del	DWS
TCCON:	LandN	106K	1.81 → 1.28	-0.37 (31%)	-0.027 (16%)	-8.0 (4%)
	LandG	76K	1.91→ 1.34	-0.38 (36%)	-0.026 (13%)	-5.1 (2%)
	LandT	314K	1.60 → 1.18	-0.26 (16%)	-0.025 (24%)	-6.9 (5%)
MODELS:	LandN	336K	1.70 → 1.17	-0.34 (27%)	-0.029 (19%)	-8.5 (7%)
	LandG	372K	1.77 → 1.20	-0.34 (29%)	-0.027 (18%)	-8.2 (7%)
SAA:	LandN	275K	1.58 → 0.87	-0.34 (34%)	-0.031 (24%)	-9.9 (11%)
	LandG	286K	1.67→ 0.90	-0.37 (45%)	-0.029 (20%)	-7.9 (6%)
SHA Mod:	LandN	98K	1.54 → 0.96	-0.35 (29%)	-0.031 (25%)	-8.5 (8%)
	LandG	99K	1.63 → 0.97	-0.36 (30%)	-0.029 (22%)	-9.8 (12%)
Ensemble		-		-0.346 ± 0.035	-0.028 ± 0.002	-8.1 ± 1.5
Statistics		Excluding	g land Target	(-0.356 ± 0.016)	(-0.029 ± 0.002)	(-8.2 ± 1.5)
B70		1.20		-0.30	-0.028	-7 to -11

Bias Correction Overview

Table 4 Bias Correction Formula (for use on v8.0) $xCO_{2 \ Corrected} = \frac{XCO_{2 \ Raw} - FOOT[fp, mode] - FEATS[mode]}{TCCON_ADJUST[mode]}$ where:FOOTPRINT BIAS (FOOT) (ppm)

			FOOT	PRINT BL	AS (FOOT) (ppm)		
Footprint (fp)	1	2	3	4	5	6	7	8
ALL MODES	-0.36	-0.15	-0.16	-0.14	0.02	0.33	0.13	0.34

	FEATURE BIAS (FEATS) (ppm)
LAND (ALL)	- 0.36* dP - 8.5* DWS - 0.029*(co2_grad_del - 15)
SEA GLINT	- 0.23*dP + 0.09*(co2_grad_del + 6.0) [second term only applied when co2_grad_del is less than -6)

	OVERALL DIVISOR (TCCON_ADJUST)	Method		
LAND GLINT LAND NADIR LAND TARGET	0.9958	Target is assigned Other modes derived from TCCON paire ND/GL and comparison to models		
SEA GLINT	0.9955	Comparison to TCCON, coastlines, model		

	Variable definitions using full/HDF/path for L2 files
co2_grad_del	1e6 * <u>RetriexalResults</u> /co2_vertical_gradient_delta
dP	0.01 * (RetrievalResults/surface_pressure_fph - RetrievalResults/surface_pressure_apriori_fph
DWS	aod_dust + aod_water + aod_seasalt
aod_dust (1-based)	(AerosolResults/aerosol_types_retrieved[1]) * (AerosolResults/aerosol_aod[1,1])
aod water (1-based)	(AerosolResults/aerosol_types_retrieved[7]) * (AerosolResults/aerosol_aod[7,1)
aod_seasalt (1-based)	(AerosolResults/aerosol_types_retrieved[2]) * (AerosolResults/aerosol _{aod□} [2,1])

Parameter Dependencies (Ocean Glint):

- Reasonable consistency across truth Metrics. Smaller BC than land.
- Same parameters as B7, but CO2_Grad_Del dependency is nonlinear.

		N	Sigma [ppm]	dP	Co2_grad_del<-6
TCCON:	WL<=2	71K	0.96 → 0.82	-0.24 (24%)	0.063 (1.8%)
	Chris	73K	0.96 → 0.82	-0.23 (25%)	0.066 (3%)
MODELS:	WL<=2	607K	1.00 → 0.78	-0.23 (33%)	0.106 (6%)
	Chris	647K	1.02 → 0.77	-0.24 (36%)	0.104 (8%)
SAA:	WL<=2	324K	0.77 → 0.44	-0.22 (60%)	0.094 (7%)
	Chris	368K	0.80 → 0.44	-0.23 (61%)	0.088 (9%)
SHA Mod:	WL<=2	155K	0.83 → 0.68	-0.11 (14%)	0.155 (18%)
	Chris	164K	0.83 → 0.67	-0.11 (14%)	0.135 (21%)
Ensemble St (No S	ats (Chris) SHA Mod)	-	•	-0.20 ± 0.06 -0.233 ± 0.01	0.098 ± 0.029 0.086 ± 0.019
B70		-	-	-0.08 (there was evidence this was too weak)	0.077

Bias Correction Overview

Table <u>4 Bias</u> Correction Formula (for use on v8.0)

 $XCO_{2 \ Corrected} = \frac{XCO_{2 \ Raw} - FOOT[fp, mode] - FEATS[mode]}{TCCON_ADJUST[mode]}$

where:

			FOOT	PRINT BL	AS (FOOT) (ppm)		
Footprint (fp)	1	2	3	4	5	6	7	8
ALL MODES	-0.36	-0.15	-0.16	-0.14	0.02	0.33	0.13	0.34

	FEATURE BIAS (FEATS) (ppm)
LAND (ALL)	- 0.36*dP - 8.5*DWS - 0.029*(co2_grad_del - 15)
SEA GLINT	- 0.23*dP + 0.09*(co2_grad_del + 6.0) [second term only applied when co2_grad_del is less than -6)

	OVERALL DIVISOR (TCCON_ADJUST)	Method
LAND GLINT LAND NADIR LAND TARGET	0.9958	Target is assigned Other modes derived from TCCON paired ND/GL and comparison to models
SEA GLINT	0.9955	Comparison to TCCON, coastlines, model bootstrap, and comparison to models

	Variable definitions using full/HDF/path for L2 files
co2_grad_del	1e6 * RetrievalResults/co2_vertical_gradient_delta
dP	0.01 * (RetrievalResults/surface_pressure_fph - RetrievalResults/surface_pressure_apriori_fph.)
DWS	aod_dust + aod_water + aod_seasalt
aod dust (1-based)	(AerosolResults/aerosol_types_retrieved[1]) * (AerosolResults/aerosol_aod[1,1])
aod_water (1-based)	(AerosolResults/aerosol_types_retrieved[7]) * (AerosolResults/aerosol_aod[7,1)
aod seasalt (1-based)	(AerosolResults/aerosol_types_retrieved[2]) * (AerosolResults/aerosol_aod_[2,1])

Global Divisors

0.0001 = 0.04 ppm

•

- Uncertainty ~0.0004 ppm = 0.15 ppm
- Model appear high by ~0.35 ppm relative to TCCON
 - AK correction not strong enough to explain difference.
 - Inter-model differences up to 0.6 ppm (1σ = 0.2 ppm)
- OCO-2 B8 tied to TCCON.

California Institute of Technology

